Fonsecazyma quercina sp. nov., a novel yeast species isolated from Persian oak (Quercus brantii) branch in Iran

Document Type : Research Paper

Authors

1 MSc Student in Plant Pathology, Department of Plant Protection, College of Agriculture, Razi University, Kermanshah, Iran

2 Associate Prof., Department of Plant Protection, College of Agriculture, Razi University, Kermanshah, Iran

3 MSc Graduate in Plant Pathology, Department of Plant Protection, College of Agriculture, Razi University, Kermanshah, Iran

10.22092/bot.j.iran.2024.365482.1385

Abstract

A taxonomic study of yeast isolates collected from the Persian oak (Quercus brantii) branch in the Zagros oak forests (Kermanshah Province, West of Iran) revealed the presence of a novel yeast species. Morphological and physiological characteristics, as well as sequence analysis of the D1/D2 region of the large subunit rRNA gene and the internal transcribed spacer region, showed that, the novel species belonged to the genus Fonsecazyma (Tremellales, Bulleraceae). The name Fonsecazyma quercina sp. nov. is proposed for this new species. This novel species has the highest sequence similarity with Fonsecazyma sp. KT301 (97.58%). This isolate comprises spherical single cells and can grow in NaCl concentrations up to 1 M. It can thrive at pH levels of 4, 8, and 10 but not at a pH of 2. The isolate is psychrotolerant, exhibiting optimal growth between 6 and 25 °C but unable to grow outside of this temperature range. Regarding carbon sources, the isolate efficiently utilizes and assimilates glucose and trehalose. It also can utilize sucrose, mannose, maltose, and fructose to some extent but shows weak utilization of cellobiose, sorbitol, and rhamnose. However, this isolate cannot utilize galactose, sorbose, lactose, melibiose, arabinose, ribose, or glycine as sole carbon sources. The holotype of Fonsecazyma quercina sp. nov. was deposited at the Fungus Reference Collection of Herbarium Ministerii Iranici Agriculturae (IRAN) as an inactive form.

Keywords

Main Subjects


Article Title [Persian]

معرفی یک گونه جدید مخمر .Fonsecazyma quercina sp. nov، جداسازی شده از شاخه بلوط در غرب ایران

Authors [Persian]

  • آرمین قبادی 1
  • صمد جمالی 2
  • سامان حسینی 3
1 دانشجوی کارشناسی ‌ارشد بیماری‌شناسی گیاهی، گروه گیاه‌پزشکی، دانشکده کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران
2 دانشیار گروه گیاه‌پزشکی، دانشکده کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران
3 کارشناسی ‌ارشد بیماری‌شناسی گیاهی، گروه گیاه‌پزشکی، دانشکده کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران
Abstract [Persian]

در این بررسی یک جدایه مخمر از نمونه شاخه‌ بلوط ایرانی (Quercus brantii Lind) در جنگل‌های بلوط زاگرس (استان کرمانشاه)، جداسازی شد. ویژگی‌های ریخت‌شناختی، فیزیولوژیکی و تجزیه و تحلیل توالی ناحیه D1/D2 ژن زیر واحد بزرگ rRNA و فاصله‌ ترانویسی شده‌ داخلی (ITS) نشان داد که این جدایه مخمر به جنس Fonsecazyma (Tremellales, Bulleraceae) تعلق دارد. همچنین بر این اساس، توالی‌های D1/D2 و ITS نشان داد که سویه IRAN 18507F متعلق به جنس مذکور بیش‌ترین شباهت (58/97 %) را با گونه Fonsecazyma sp. KT301 دارد، لذا نام Fonsecazyma quercina sp. nov. برای این گونه پیشنهاد شد. سلول‌های این مخمر کروی بوده و ‌توانست تا غلظت 1 مولار NaCl رشد کند. گونه مذکور در اسیدیته ۴، 8 و 10 رشد کرد، اما قادر به رشد در pH اسیدی 2 نبود. این جدایه که مقاوم به سرما است می‌تواند به خوبی بین دماهای 6 تا 25 درجه سلسیوس رشد کند، اما در دمای خارج از این محدوده توانایی رشد ندارد. جدایه مورد آزمایش به خوبی قادر به استفاده از گلوکز، ترهالوز، ساکارز، مانوز، مالتوز و فروکتوز به عنوان منابع کربن بود، اما از سلوبیوز، سوربیتول و رامنوز به صورت خفیف استفاده کرد و قادر به استفاده از گالاکتوز، سوربوز، لاکتوز، ملیبیوز، آرابینوز، ریبوز و گلیسین به عنوان تنها منابع کربن نبود. سویه مرجع Fonsecazyma quercina sp. nov. در مجموعه هرباریوم وزارت جهاد کشاورزی (IRAN 18507F) به صورت غیرفعال نگهداری می‌شود.
 
 

Keywords [Persian]

  • جنگل‌­های بلوط زاگرس
  • متحمل به سرما
  • مخمر بازیدیومیستی
  • ناحیه D1/D2
  • Quercus
Alcaíno, J., Cifuentes, V. & Baeza, M. 2015. Physiological adaptations of yeasts living in cold environments and their potential applications. World Journal of Microbiology Biotechnology 31: 1467–1473. DOI: 10.1007/s11274-015-1900-8.
Boekhout, T., Amend, A.S., El Baidouri, F., Gabaldón, T., Geml, J., Mittelbach, M., Robert, V., Tan, C.S., Turchetti, B., Vu, D., Wang, Q-M. & Yurkov, A. 2022. Trends in yeast diversity discovery. Fungal Diversity 114: 491–537.
Borkar, S.G. 2018. Laboratory Techniques in Plant Bacteriology, CRC Press. 343 pp.
Brink, B. 2010. Urease test protocol. American Society for Microbiology 1–7. https://asm.org/getattachment/ac4fe214-106d-407c-b6c6-e3bb49ac6ffb/urease-test-protocol-3223.pdf.
Bulgari, R., Trivellini, A. & Ferrante, A. 2019. Effects of two doses of organic extract-based biostimulant on greenhouse lettuce grown under increasing NaCl concentrations. Frontiers in Plant Science 9: 1870. DOI: 10.3389/fpls.2018.01870.
Carrasco, M., Rozas, J.M., Barahona, S., Alcaíno, J., Cifuentes, V. & Baeza, M. 2012. Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiology 12: 251. DOI: 10.1186/1471-2180-12-251.
Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology Evolution 17: 540–552. DOI: 10.1093/oxfordjournals.molbev.a026334.
Christensen, W.B. 1946. Urea decomposition as a means of differentiating Proteus and Paracolon cultures from each other and from Salmonella and Shigella types. Journal of Bacteriology 52. https://journals.asm.org/journal/jb.
Corte, L., Rellini, P., Lattanzi, M., Picchetta, C., Fatichenti, F. & Cardinali, G. 2006. Diversity of salt response among yeasts. Annals of Microbiology 56: 363–368. DOI: 10.1007/BF03175033.
Fell, J.W., Boekhout, T., Fonseca, A., Scorzetti, G. & Statzell-Tallman, A. 2000. Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. International Journal of Systematic and Evolutionary Microbiology 50: 1351–1371. DOI: 10.1099/00207713-50-3-1351.
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791. DOI: 10.1111/j.1558-5646.1985.tb00420.x.
Findley, K., Rodriguez-Carres, M., Metin, B., Kroiss, J., Fonseca, A., Vilgalys, R. & Heitman, J. 2009. Phylogeny and phenotypic characterization of pathogenic Cryptococcus species and closely related saprobic taxa in the Tremellales. Eukaryotic cell 8(3): 353–361. DOI: 10.1128/ec.00373-08.
Golubev, W.I., Pfeiffer, I. & Tomashevskaya, M.A. 2008. Cryptococcus pinus sp. nov., an anamorphic basidiomycetous yeast isolated from pine litter. International Journal of Systematic and Evolutionary Microbiology 58(8): 1968–1971. DOI: 10.1099/ijs.0.65764-0.
Hanane, T., Najoua, B., Salsabil, H., Abdellatif, J.I., Dalila, B., Ahmad, I., Bukhari, S.A.R., Irfan, M., Chen, L. & Hicham, B. 2022. Qualitative screening of yeast biodiversity for hydrolytic enzymes isolated from the gastrointestinal tract of a coprophage “Gymnopleurus sturmi” and dung of ruminants. Fermentation 8: 692. DOI: 10.3390/fermentation8120692.
Kumar, D., Kumar, L., Nagar, S., Raina, C., Parshad, R. & Gupta, V.K. 2012. Screening, isolation and production of lipase/esterase producing Bacillus sp. strain DVL2 and its potential evaluation in esterification and resolution reactions. Archives of Applied Science Research 4: 1763–1770. http://scholarsresearchlibrary.com/archive.html.
Kurtzman, C.P., Fell, J.W., Boekhout, T. & Robert, V. 2011. Methods for isolation, phenotypic characterization and maintenance of yeasts. In Pp. 87-110: Kurtzman, C.P., Fell, J.W. & Boekhout, T. (eds), The Yeasts (5th. edition). London, Elsevier.
Kurtzman, C.P., Mateo, R.Q., Kolecka, A., Theelen, B., Robert, V. & Boekhout, T. 2015. Advances in yeast systematics and phylogeny and their use as predictors of biotechnologically important metabolic pathways. FEMS Yeast Research 15 (6). DOI: 10.1093/femsyr/fov050.
Kurtzman, C.P. & Robnett, C.J. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73: 331–371. DOI: 10.1023/A:1001761008817.
Lachance, M.A. 2006. Yeast Biodiversity: How Many and How Much?. Biodiversity and ecophysiology of yeasts. Springer, Berlin, Heidelberg.
Landell, M.F., Inacio, J., Fonseca, A., Vainstein, M.H. & Valente, P. 2009. Cryptococcus bromeliarum sp. nov., an orange-coloured basidiomycetous yeast isolated from bromeliads in Brazil. International Journal of Systematic and Evolutionary Microbiology 59(4): 910–913. DOI: 10.1099/ijs.0.005652-0.
Li, A.-H., Yuan, F.X., Groenewald, M., Bensch, K., Yurkov, A.M., Li, K., Han, P.-J., Guo, L.-D., Aime, M.C. & Sampaio, J.P. 2020. Diversity and phylogeny of basidiomycetous yeasts from plant leaves and soil: proposal of two new orders, three new families, eight new genera and one hundred and seven new species. Studies in Mycology 96: 17–140. DOI: 10.1016/j.simyco.2020.01.002.
Liu, X.-Z., Wang, Q.M., Göker, M., Groenewald, M., Kachalkin, A., Lumbsch, H.T., Millanes, A., Wedin, M., Yurkov, A. & Boekhout, T. 2015a. Towards an integrated phylogenetic classification of the Tremellomycetes. Studies in Mycology 81: 85–147. DOI: 10.1016/j.simyco.2015.12.001.
Liu, X.-Z., Wang, Q.M., Theelen, B., Groenewald, M., Bai, F.-Y. & Boekhout, T. 2015b. Phylogeny
of tremellomycetous yeasts and related dimorphic
and filamentous basidiomycetes reconstructed from multiple gene sequence analyses.
Studies in Mycology 81: 1–26. DOI: 10.1016/j.simyco.2015.08.001.
Maharana, A.K. & Ray, P. 2013. Isolation and screening of cold active extracellular enzymes producing psychrotrophic bacteria from soil of Jammu City. Biosciences Biotechnology Research Asia 10: 267–273.
Margesin, R., Neuner, G. & Storey, K. 2007. Cold-loving microbes, plants, and animals - fundamental and applied aspects. Naturwissenschaften 94: 77–99. DOI: 10.1007/s00114-006-0162-6.
Mašínová, T., Yurkov, A. & Baldrian, P. 2018. Forest soil yeasts: Decomposition potential and the utilization of carbon sources. Fungal Ecology 34: 10–19. DOI: 10.1016/j.funeco.2018.03.005.
Mekonnen, E., Kebede, A., Nigussie, A., Kebede, G. & Tafesse, M. 2021. Isolation and characterization of urease-producing soil bacteria. International Journal of Microbiology 2021: 1-11. DOI: 10.1155/2021/8888641.
Middelhoven, J. & Kurtzman, C.P. 2003. Relation between phylogeny and physiology in some ascomycetous yeasts. Antonie van Leeuwenhoek 83: 69–74. DOI: 10.1023/A:1022916630030.
Mishra, S. & Behera, N. 2008. Amylase activity of a starch degrading bacteria isolated from soil receiving kitchen wastes. African Journal of Biotechnology 7 (18): 3326–3331. http://www.academicjournals.org/AJB.
Morais, P.B., Pagnocca, F.C. & Rosa, C.A. 2006. Yeast Communities in Tropical Rain Forests in Brazil and other South American Ecosystems. Biodiversity and Ecophysiology of Yeasts. Springer, Berlin, Heidelberg.
Nakase, T., Jindamorakot, S., Am-In, S., Potacharoen, W. & Tanticharoen, M. 2006. Yeast Biodiversity in Tropical Forests of Asia. Biodiversity and Ecophysiology of Yeasts Springer, Berlin, Heidelberg. DOI: 10.1007/3-540-30985-3_18.
Nei, M. & Kumar, S. 2000. Molecular Evolution and Phylogenetics, USA, Oxford University Press. 352 pp.
Ramnath, L., Sithole, B. & Govinden, R. 2017. Identification of lipolytic enzymes isolated from bacteria indigenous to Eucalyptus wood species for application in the pulping industry. Biotechnology Reports 15: 114–124. DOI: 10.1016/j.btre.2017.07.004.
Russell, N.J. 2006. Antarctic microorganisms: coming in from the cold. Culture 27: http://www.oxoid.com/culture/27-2.pdf.
Satoh, K., Maeda, M., Umeda, Y., Sugamata, M. & Makimura, K. 2013. Cryptococcus lacticolor sp. nov. and Rhodotorula oligophaga sp. nov., novel yeasts isolated from the nasal smear microbiota of Queensland koalas kept in Japanese zoological parks. Antonie Van Leeuwenhoek 104: 83–93. DOI: 10.1007/s10482-013-9928-y.
Schaad, N.W., Jones, J.B. & Chun, W. 2001. Laboratory Guide for the Identification of Plant Pathogenic Bacteria (3rd. edition), American Phyto-pathological Society, St. Paul, USA. 72 pp.
Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A. & White, M.M. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences 109(16): 6241–6246. DOI: 10.1073/pnas.1117018109.
Scorzetti, G., Fell, J., Fonseca, A. & Statzell-Tallman, A. 2002. Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Research 2: 495–517. DOI: 10.1111/j.1567-1364.2002.tb00117.x.
Shin, K.-S., Oh, H.-M., Park, Y.-H., Lee, K.H., Poo, H., Kwon, G.-S. & Kwon, O.-Y. 2006. Cryptococcus mujuensis sp. nov. and Cryptococcus cuniculi sp. nov., basidiomycetous yeasts isolated from wild rabbit faeces. International Journal of Systematic and Evolutionary Microbiology 56: 2241–2244. DOI: 10.1099/ijs.0.64353-0.
Singh, P., Tsuji, M., Singh, S. M., Roy, U. & Hoshino, T. 2013. Taxonomic characterization, adaptation strategies and biotechnological potential of cryophilic yeasts from ice cores of Midre Lovénbreen glacier, Svalbard, Arctic. Cryobiology 66: 167–175. DOI: 10.1016/j.cryobiol.2013.01.002.
Statzell-Tallman, A., Belloch, C. & Fell, J.W. 2008. Kwoniella mangroviensis gen. nov., sp. nov. (Tremellales, Basidiomycota), a teleomorphic yeast from mangrove habitats in the Florida Everglades and Bahamas. FEMS Yeast Research 8(1): 103–113. DOI: 10.1111/j.1567-1364.2007.00314.x.
Strauss, M., Jolly, N., Lambrechts, M. & Van Rensburg, P. 2001. Screening for the production of extracellular hydrolytic enzymes by non‐Saccharomyces wine yeasts. Journal of Applied Microbiology 91: 182–190. DOI: 10.1046/j.1365-2672.2001.01379.x.
Thomas-Hall, S.R., Turchetti, B., Buzzini, P., Branda, E., Boekhout, T., Theelen, B. & Watson, K. 2010. Cold-adapted yeasts from Antarctica and the Italian Alps-description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14: 47–59. DOI: 10.1007/s00792-009-0286-7.
Vu, D., Groenewald, M., Szöke, S., Cardinali, G., Eberhardt, U., Stielow, B. & Robert, V. 2016. DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation.
Studies in Mycology 85(1): 91–105. DOI: 10.1016/j.simyco.2016.11.007.
Wang, G.S., Zhou, Y., Xue, L., Li, A.H., Wangmu & Wang, Q.M. 2020. Teunia rosae sp. nov. and Teunia rudbeckiae sp. nov. (Cryptococcaceae, Tremellales), two novel basidiomycetous yeast species isolated from flowers. International
Journal of Systematic and Evolutionary Microbiology 70(10): 5394–5400. DOI: 10.1099/ijsem.0.004423.
Wang, Q.M., Wang, S.A., Jia, J.H. & Bai, F.Y. 2007. Cryptococcus tibetensis sp. nov., a novel basidiomycetous anamorphic yeast species isolated from plant leaves. The Journal of General and Applied Microbiology 53(5): 281–285. DOI: 10.2323/jgam.53.281.
White, T.J., Bruns, T., Lee, S. & Taylor, J. 1990. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. PCR protocols: a guide to methods applications 18: 315–322.