DOI: 10.22092/BOT.J.IRAN.2024.365482.1385

Fonsecazyma quercina sp. nov., a novel yeast species isolated from Persian oak (Ouercus brantii) branch in Iran

Received: 16.04.2024 ========== Revised: 30.05.2024 ========== Accepted: 12.06.2024

- Armin Ghobadi: MSc Student in Plant Pathology, Department of Plant Protection, College of Agriculture, Razi University, Kermanshah, Iran
- Samad Jamali⊠: Associate Prof., Department of Plant Protection, College of Agriculture, Razi University, Kermanshah, Iran (jamali454@yahoo.com)
- Saman Hosseini: MSc Graduate in Plant Pathology, Department of Plant Protection, College of Agriculture, Razi University, Kermanshah, Iran

Abstract

A taxonomic study of yeast isolates collected from the Persian oak (*Quercus brantii*) branch in the Zagros oak forests (Kermanshah Province, West of Iran) revealed the presence of a novel yeast species. Morphological and physiological characteristics, as well as sequence analysis of the D1/D2 region of the large subunit rRNA gene and the internal transcribed spacer region, showed that, the novel species belonged to the genus *Fonsecazyma (Tremellales, Bulleraceae)*. The name *Fonsecazyma quercina* sp. nov. is proposed for this new species. This novel species has the highest sequence similarity with *Fonsecazyma* app. KT301 (97.58%). This isolate comprises spherical single cells and can grow in NaCl concentrations up to 1 M. It can thrive at pH levels of 4, 8, and 10 but not at a pH of 2. The isolate is psychrotolerant, exhibiting optimal growth between 6 and 25 °C but unable to grow outside of this temperature range. Regarding carbon sources, the isolate efficiently utilizes and assimilates glucose and trehalose. It also can utilize sucrose, mannose, maltose, and fructose to some extent but shows weak utilization of cellobiose, sorbitol, and rhamnose. However, this isolate cannot utilize galactose, sorbose, lactose, melibiose, arabinose, ribose, or glycine as sole carbon sources. The holotype of *Fonsecazyma quercina* sp. nov. was deposited at the Fungus Reference Collection of Herbarium Ministerii Iranici Agriculturae (IRAN) as an inactive form.

Keywords: Basidiomycetous yeast, D1/D2 region, psychrotolerant, Quercus, Zagros oak forests

معرفی یک گونه جدید مخمر .*Fonsecazyma quercina* sp. nov جداسازی شده از شاخه بلوط در غرب ایران آ دریافت: ۱۴۰۳/۰۲/۱۲ ============= بازنگری: ۱۴۰۳/۰۳/۱۰ =============== یذیرش: ۱۴۰۳/۰۳/۲۲

آرمین قبادی: دانشجوی کارشناسی ارشد بیماریشناسی گیاهی، گروه گیاهپزشکی، دانشکده کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران

صمد جمالی ایا دانشیار گروه گیاه پزشکی، دانشکده کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران (jamali454@yahoo.com) سامان حسینی: دانش آموخته کارشناسی ارشد بیماری شناسی گیاهی، گروه گیاه پزشکی، دانشکده کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران

خلاصه

در این بررسی یک جدایه مخمر از نمونه شاخه بلوط ایرانی (.DI/D2 و احد بزرگ RNA و فاصله ترانویسی شده داخلی (ITS) نشان داد شد. ویژگیهای ریختشناختی، فیزیولوژیکی و تجزیه و تحلیل توالی ناحیه D1/D2 ژن زیر واحد بزرگ RNA و فاصله ترانویسی شده داخلی (ITS) نشان داد که این جدایه به جنس *Fonsecazyma (Tremellales, Bulleraceae) Sonsecazyma دا*رد. همچنین بر این اساس، توالیهای D1/D2 و ITS نشان داد که سویه Fonsecazyma متعلق به جنس مذکور بیش ترین شباهت (/۹۷/۵۸) را با گونه Fonsecazyma sp. KT301 دارد، لذا نام .TS م و ۱۰ برای این گونه پیشنهاد شد. سلولهای این مخمر کروی بوده و توانست تا غلظت ۱ مولار NaCl رشد کند. گونه مذکور در ۴ pH ، ۸ و ۱۰ رشد کرد، اما قادر به رشد در درجه اسیدی ۲ نبود. این جدایه که مقاوم به سرما است توانست به خوبی بین دماهای ۶ تا ۲۵ درجه سلسیوس رشد کند، اما در دمای خارج از این محدوده توانایی رشد نداشت. همچنین، جدایه مذکور به خوبی قادر به استفاده از گلوکز، ترهالوز، ساکارز، مانوز، مالتوز و فروکتوز به عنوان منابع کربن بود، اما از سلوبیوز، سوربیتول و رامنوز به صورت خفیف استفاده کرد و قادر به استفاده از گالاکتوز، سوربوز، لاکتوز، ملیبیوز، آرابینوز، ریبوز و گلیسین به عنوان تنها منابع کربن نبود. سویه مرجع .nov (یروز و گلیسین به عنوان تنها منابع کربن نبود. سویه مرجع .nov (یروز و گلیمان توانست به موای وزارت جهاد کشوز، مالتوز و فروکتوز به عنوان منابع کربن بود، اما از کربن نبود. سویه مرجع .nov و رامنوز به صورت غیف استفاده کرد و قادر به استفاده از گالاکتوز، سوربوز، لاکتوز، ملیبیوز، آرابینوز، ریبوز و گلیمین به عنوان تنها منابع کربن نبود. سویه مرجع .nov و رامنوز مورت غیف استفاده کرد و قادر به استفاده از گالوکتوز، سوربوز، لاکتوز، ملیبوز، آرابینوز، ریبوز و گلیسین به عنوان تنها منابع

واژههای کلیدی: جنگلهای بلوط زاگرس، متحمل به سرما، مخمر بازیدیومیستی، ناحیه D1/D2، D1/D2

* مستخرج از پایاننامه نگارنده نخست به راهنمایی دکتر صمد جمالی ارایه شده به دانشگاه رازی

Introduction

The genus Fonsecazyma was first proposed in 2015 by Liu et al. (2015a), using a seven-gene dataset including the internal transcribed spacer region (ITS-rDNA), the small subunit (SSU or 18S) rRNA gene, the D1/D2 domains of the large subunit (LSU or 26S) rRNA gene, the translation elongation factor $1-\alpha$ (*TEF1*), two subunits of RNA polymerase II (RPB1 and RPB2), and the cytochrome b (CYTB) genes (Liu et al. 2015a). Fonsecazyma formed a well-supported clade (97%) that included Cryptococcus mujuensis CBS 10308. C. tronadorensis (GU560003), and Kwoniella betulae (KM408130). Since C. mujuensis and C. tronadorensis diverged significantly from the genus Cryptococcus, and K. betulae had no close relatives within Kwoniella, a new genus Fonsecazyma was proposed to include these three species (Liu et al. 2015b). Later, in 2020, F. betulae and F. tronadorensis were transferred to a new genus Teunia and renamed Teunia betulae, and T. tronadorensis, respectively (Li et al. 2020).

The type species of Fonsecazyma i.e., F. mujuensis, formed its own single-species lineage in the seven-gene phylogeny (Shin et al. 2006, Liu et al. 2015a, Li et al. 2020). Naming this clade Fonsecazyma was crucial to avoid confusion with other genera, such as Kwoniella and Cryptococcus (Li et al. 2020). Based on a seven-gene dataset, Fonsecazyma was placed in Bulleraceae (Tremellales, Tremellomycetes, Agaricomycotina, and Basidiomycota) and clustered with high bootstrap support (98-100%) with the genera Pseudotremella and Sirobasidium, although it remained distinct from them. Currently, the genus Fonsecazyma contains only one known species, F. mujuensis (Li et al. 2020).

For the identification of yeast species, conventional methods mainly rely on morphological and physiological data, which are time-consuming and may result in inaccurate species identification. Molecular biology has led to the development of new techniques for quickly and accurately identifying different types of yeasts (Middelhoven & Kurtzman 2003, Kurtzman *et al.* 2011,

Kurtzman *et al.* 2015). The identification of yeast species is now routinely determined by DNA sequence analyses. The most commonly used comparisons include nucleotide sequence divergence in domains 1 and 2 (D1/D2) of the LSU and ITS (Kurtzman & Robnett 1998, Fell *et al.* 2000, Scorzetti *et al.* 2002).

The number of newly identified yeast species has increased in recent years, mainly due to the acceptance of ribosomal DNA (rDNA) gene sequence analysis, such as the D1/D2 domain and the ITS region, and the availability of databases (Scorzetti *et al.* 2002, Kurtzman *et al.* 2011). Various estimates suggest that, numerous yeast species are yet to be described (Lachance 2006, Kurtzman *et al.* 2015). Based on available evidence (Morais *et al.* 2006, Nakase *et al.* 2006), it is worth noting that, a significant proportion of these undescribed yeast species are thought to inhabit forest environments.

In the present study, a novel basidiomycetous yeast obtained from a Persian oak branch in the Zagros oak forest (Kermanshah Province, W of Iran) is described. Based on physiological, biochemical, and molecular analyses of ITS and the D1/D2 domain of the LSU rRNA gene, the isolate, namely, *Fonsecazyma quercina* sp. nov. is, therefore, classified here.

Materials and Methods

- Sampling and isolation

A novel yeast strain (IRAN 18507F), was isolated from bark samples of a Persian oak tree in Chahar Zebare-Oliya (Kermanshah Province, W of Iran), 34°13'58.8" N, 46°40'58.3" E, in Nov. 2022. Bark samples were placed in a flask with sterile distilled water and shaken for 30 min. The resulting solution was plated on potato dextrose agar containing chloramphenicol (50 ppm) to isolate the yeast. In this study, the phenotypic and genotypic characteristics of the strain were analyzed to determine its taxonomic and phylogenetic position.

- Morphological characteristics

A single colony from a streak plate culture on PDA medium was examined for its macroscopic characteristics, including color, texture, surface, elevation, and margin according to established protocols (Kurtzman *et al.* 2011).Cell shape was further assessed using light microscopy.Assimilation of carbon sources

The ability of the yeast to utilize various carbon sources was assessed using Yeast extract-peptone (YEP) fermentation basal medium. Bromothymol blue indicator (4 mL of a 50 mg/75 mL solution) was added to 100 mL of YEP medium, dispensed into sterile test tubes, and autoclaved. After sterilization, a 1% solution of each carbon source including glucose, galactose, sucrose, mannose, maltose, sorbose, cellobiose, trehalose, lactose, melibiose, sorbitol, fructose, arabinose, ribose, rhamnose, and glycine was added to separate tubes, followed by inoculation with fresh yeast culture and incubation at 25 °C for up to seven days. Utilization of a carbon source was indicated by a color change from green to yellow (Schaad *et al.* 2001, Kurtzman *et al.* 2011).

- Extracellular enzymatic activity

The ability of the yeast isolate to produce extracellular enzymes was assessed by cultivating the isolate in triplicate on basal media containing specific enzyme substrates.

- Catalase activity

Catalase activity was assessed by mixing a yeast colony with a drop of 3% hydrogen peroxide (H_2O_2) and observing for immediate oxygen bubble formation (Schaad *et al.* 2001, Borkar 2018).

- Oxidase activity

To assess oxidase activity, a 1% solution of tetramethyl-p-phenylenediamine-dihydrochloride (TMPD) reagent was prepared. A filter paper soaked in this solution was placed in a petri dish, and a small amount of the yeast culture was streaked onto the soaked area. A change in colony color to blue within 10 s was considered a positive reaction, 10–60 s was considered weakly positive, and no change within 60 s was considered negative (Schaad *et al.* 2001).

- Amylase activity

Starch hydrolysis was assessed by culturing the isolate on PDA plates supplemented with 1% starch for seven days at 25° C. Grown colonies were then washed,

and the agar surface was flooded with Lugol's iodine solution. A clear zone around the colony on the blue background indicates starch hydrolysis by the isolate, suggesting amylase enzyme production (Mishra & Behera 2008, Borkar 2018).

- Lipase/esterase activity

To assess lipolytic activity and production of lipase and esterase enzymes, the isolate was cultured on media containing Tween 80 (a broad-spectrum lipase substrate) and Tween 20 (an esterase substrate) in triplicate (Kumar *et al.* 2012). The medium was prepared with 10 g peptone, 5 g NaCl, 0.1 g CaCl₂ 2H₂O, 1.5 g agar, and 10 mL of either Tween in one liter of distilled water. The plates were incubated at 25 °C for seven days. The presence of crystalline precipitates around the colony growth after incubation indicated positive results (Ramnath *et al.* 2017).

- Lecithinase activity

The lecithinase activity of the isolate was assessed by culturing a streak plate on PDA medium supplemented with egg yolk (lecithin substrate) in triplicate. The plates were incubated at 25 °C for seven days. The formation of a clear halo around the isolate after incubation indicated positive results, signifying lecithin hydrolysis (Maharana & Ray 2013).

- Protease activity

Protease enzyme production was assessed by culturing the isolate on PDA medium containing 2% skim milk in triplicate and incubating at 25 °C for seven days. A clear halo around the isolate after incubation indicated a positive result, signifying the presence of protease activity (Strauss *et al.* 2001, Carrasco *et al.* 2012).

- Xylanase activity

Xylanase activity was assessed by culturing the isolate on PDA medium supplemented with 0.5% xylan, followed by incubation at 25 °C for seven days. The formation of a clear halo around the colony indicated xylanase enzyme production (Carrasco *et al.* 2012).

- Gelatinase activity

Gelatinase activity was assessed by culturing the isolate on PDA medium supplemented with 1.5% gelatin.

A clear halo around the colony after seven days of incubation at 25 °C indicated a positive reaction, signifying gelatinase production (Hanane *et al.* 2022).

- Urease activity

To assess urease activity, a urea broth medium was prepared by adding 20 g of sterilized urea solution (prepared with 180 mL of distilled water) to autoclaved basal medium (containing 1 g each of peptone and dextrose, 5 g NaCl, 2 g KH₂PO₄, 0.012 g phenol red, and 15 g agar in 800 mL of distilled water) using a sterile PTFE membrane filter (pore size 0.22 μ m). The medium was then dispensed into sterile tubes and slanted. After inoculation with the yeast isolate, the tubes were incubated at 25 °C for 48–72 h. A color change from orange to red due to ammonia production and alkalinization of the medium indicated a positive urease test (Christensen 1946, Brink 2010).

- Physiological characteristics

The isolate's growth temperature range was investigated by culturing it in triplicate on PDA medium at different temperatures (0, 4, 10, 15, 20, 25, 28, 30, and 35 °C). One replicate at 25 °C was used as a positive control. The presence or absence of growth was recorded (Borkar 2018). To assess salt tolerance, the yeast isolate was cultured on PDA medium containing 0.5, 1, 2, and 3 molar NaCl (58.44 g/mol). Petri dishes were incubated at 25 °C for seven days, and growth or no growth was observed at each salt concentration (Corte et al. 2006, Bulgari et al. 2019). The ability of the yeast isolate to grow at different pH levels (2, 4, 6, 8, and 10) was investigated by adjusting the pH of PDA medium using NaOH and HCl. After autoclaving, the medium was inoculated with the isolate and incubated at 25 °C for seven days, and the presence or absence of growth was recorded at each pH level. Three replicates were considered for each pH (Borkar 2018, Hanane et al. 2022).

- Molecular identification

For molecular identification of the yeast isolate, genomic DNA was extracted from a pure culture using the Genome Extraction Kit (Denazist Asia Company, Mashhad, Iran). Subsequently, the internal transcribed

spacer (ITS) and D1/D2 domain of the 26S rRNA gene were amplified by polymerase chain reaction (PCR) using the primers ITS1 (5'-TCCGTAGGTGAACCTGCGG -3') / ITS4 (5'-TCCTCCGCTTATTGATATGC-3⁽⁾ (White et al. 1990) and NL1 (5'-GCATATCAATAAGCGGAGGAAAAG-3') / NL4 (5'-GGTCCGTGTTTCAAGACGG-3') (Kurtzman & Robnett 1998), respectively. The PCR reaction mixture (final volume 25 µL) contained 12.5 µL of 2x master mix (Taq polymerase, dNTPs, and reaction buffer (Amplicon Company), 1.5 µL each of the primers (10 µM), 2 µL of sample DNA, and 7.5 µL of nucleasefree deionized water. The PCR program consisted of an initial denaturation at 95 °C for five min, followed by 30 cycles of denaturation at 95 °C for 40 s, annealing at 55 °C for 40 s, and extension at 72 °C for 60 s. A final extension step was performed at 72 °C for 10 min. The PCR was performed using a Biometra T-Personal thermocycler (Analytik Jena, Germany). PCR products (3 μ L) were then electrophoresed on a 1% agarose gel with 1 × TAE buffer and DNA Safe Stain Dye (Cinaclon Company) for 60 min at 85 V. The PCR products were subsequently sent to Microsynth (Switzerland) for sequencing.

- Phylogenetic analysis

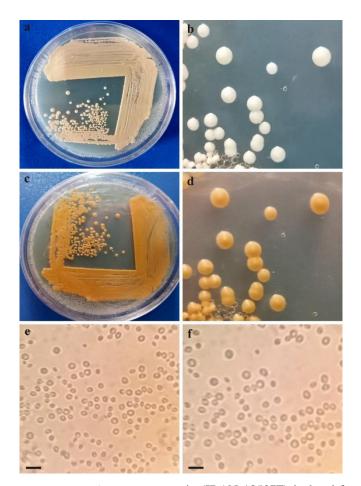
After sequencing, the nucleotide sequences were edited using Chromas software and subjected to a nucleotide similarity search using the NCBI BLAST service to identify closely related sequences. MUSCLE, implemented in the MEGA X software, was used to perform a multiple alignment of the ITS and D1/D2 sequences obtained in this study with sequences retrieved from GenBank (Table 1). The alignments were then manually refined using BioEdit Ver. 7.2.5 software. Gblocks Ver. 0.91b (Castresana 2000) was used to exclude poorly aligned regions from the final alignment of each dataset with the following parameters: minimum conserved sequences per position = 14, minimum block length = 5, maximum contiguous non-conserved positions = 4, minimum flanking sequences = 22, and allowed gaps = 50% under these parameters as follows: minimum number of sequences for a conserved position = 14, minimum length of a block = 5, maximum number of contiguous nonconserved positions = 4, minimum number of sequences for a flanking position = 22, and allowed gap positions = half.

Both distance (Neighbor-joining) and cladistic (maximum parsimony and maximum likelihood) methods were used to infer the evolutionary history of the isolate, using MEGA X software for the analyses. The maximum parsimony tree was generated by the Subtree-Pruning-Regrafting (SPR) algorithm (search level 1, initial trees obtained by random addition of sequences, 10 replicates) (Nei & Kumar 2000). Gaps and missing data were excluded from the analysis (complete deletion). In maximum likelihood analysis, the percentage of trees in which the associated taxa clustered together is shown next to the branches. A discrete gamma distribution [five rate categories (+G, parameter = 0.142)] was used to model evolutionary rate differences among sites. The tree was drawn to scale, with branch lengths measured in the number of substitutions per site. This analysis involved 27 nucleotide sequences. The reliability of tree topologies was evaluated by calculating 1000 bootstrap re-samplings (Felsenstein 1985).

Table 1. List of sequences used in the construction of phylogenetic trees

	GenBank Accession No.		T 1 (10) (G , ,	Isolation		
Taxon	ITS D1/D2 (LSU)		Isolate / Strain	Country	source	Reference	
Fonsecazyma sp.	MK942578	-	12A8	China	Flower	(Wang et al. 2020)	
Fonsecazyma sp.	MK942577	-	X54	China	Flower	(Wang et al. 2020)	
Fonsecazyma sp.	MK942579	-	21S4	China	Flower	(Wang et al. 2020)	
Fonsecazyma sp.	LC440108	-	DMKU-XD44	Thailand	Peat	Unpublished	
Fonsecazyma sp.	KY558358	KY558358	KT301	Czech Republic	Oak litter	(Mašínová et al. 2018)	
Fonsecazyma mujuensis	NR137814	NG058290	CBS 10308	China	Culture collection	(Liu et al. 2015)	
Cryptococcus sp. (Fonsecazyma)	-	EU002790	CBS 10166	Portugal	Plant	(Liu et al. 2015)	
Cryptococcus sp. (Fonsecazyma)	-	EU002791	CBS 10167	Portugal	Plant	(Liu et al. 2015)	
Cryptococcus sp. (Fonsecazyma)	-	EU002792	CBS 10168	Portugal	Plant	(Liu et al. 2015)	
Cryptococcus sp. (Fonsecazyma)	-	EU002793	CBS 10169	Portugal	Plant	(Liu et al. 2015)	
Teunia helanensis	NR174732	-	CGMCC 2.4450	China	Soil	(Li et al. 2020)	
Teunia sp.	OQ818880	-	KBP:Y-7082	Russia	Culture collection	Unpublished	
T. korlaensis	NR174731	MK050286	CGMCC 2.3835	China	Soil	(Li et al. 2020)	
Teunia sp.	-	OP941487	KBP:Y-6585	Russia	Termites	Unpublished	
Teunia sp.	-	OQ851887	NYNU 23232	China	-	Unpublished	
Teunia sp.	-	OP470195	XZY194-1	China	Quercus	Unpublished	
Kwoniella mangrovensis	NR073332	AF444742	CBS 8507	USA	Mangrove Cay	(Statzell et al. 2008)	
K. bestiolae	NR111373	NG042482	CBS 10118	Vietnam	Litchi fruit borer	(Findley <i>et al.</i> 2009)	
K. pini	NR111269	NG042453	VKM Y-2958	Hungary	Pine litter	(Golubev et al. 2008)	
Cryptococcus wingfieldii	NR111375	NG042484	CBS 7118	South Africa	Scolytid beetles	(Findley et al. 2009)	
C. neoformans	NR130682	NG058766	CBS 8710	USA	Patient	(Findley et al. 2009)	
C. neoformans	NR171785	-	ATCC 32045	USA	Culture collection	Unpublished	
C. gattii	NR165941	-	CBS 6289	China	Culture collection	Unpublished	
C. gattii	JN944027	-	WM 05.414	Brazil	-	(Schoch et al. 2012)	
C. gattii	-	KC171326	ATCC MYA- 4873	USA	Culture collection	Unpublished	
C. gattii	-	KC171325	ATCC MYA- 4871	USA	Culture collection	Unpublished	
Genolevuria tibetensis	NR159814	-	CBS 10456	China	Plant	(Wang et al. 2007)	
G. tibetensis	-	NG068728	CGMCC AS 2.2653	China	Plant	(Wang et al. 2007)	

Ghobadi et al. / Fonsecazyma quercina sp. nov., a novel yeast species ... / Rostaniha 25(2), 2024


Table 1 (contd)						
G. amylolytica	NR137810	-	CBS 10048	China	Plant	(Liu et al. 2015)
G. bromeliarum	NR144815	KY107746	CBS 10424	Brazil	Bromelia	(Landell et al. 2009)
Pseudotremella lacticolor	NR158875	NG060058	CBS 10915	Japan	Culture collection	(Satoh <i>et al</i> . 2013)
P. moriformis	NR155685	NG058379	CBS 7810	Canada	Plant	(Vu et al. 2016)
Bullera hannae	KY101788	KY106238	CBS 8286	New Zealand	Plant	(Vu et al. 2016)
B. penniseticola	KY101792	KY106242	CBS 8623	Thailand	Plant	(Vu et al. 2016)
B. unica	KY101799	KY106248	CBS 8290	New Zealand	Plant	(Vu et al. 2016)
B. alba	NR111083	AF444759	CBS 500	USA	Culture collection	(Scorzetti et al. 2002)
B. alba	-	KU179840	RKAT232	Canada	Sea-ice	Unpublished
Candida tropicalis	NR111250	-	CBS 94	Australia	Culture collection	Unpublished
C. tropicalis	-	NG054834	ATCC 750	Germany	Culture collection	Unpublished

Results

- Morphological identification of isolate

On the PDA medium, young colonies of strain IRAN 18507F appeared cream-colored, changing to

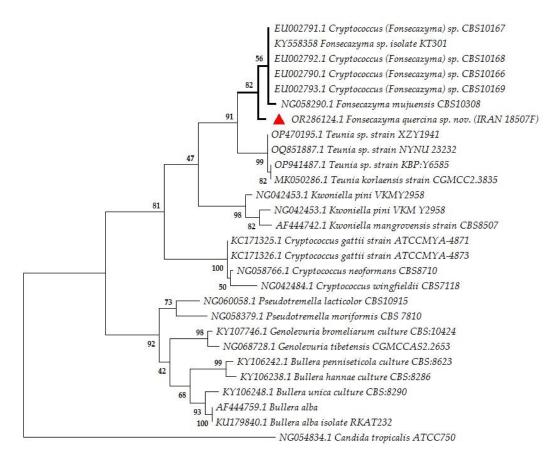
yellow with extended growth (Fig. 1 a-d). Colonies exhibited a mucoid texture, a smooth raised surface, and a complete edge. Under light microscopy, single cells were spherical (Fig. 1 e, f).

Fig. 1. Morphology of *Fonsecazyma quercina* sp. nov. strain (IRAN 18507F) isolated from Persian oak tree bark in Kermanshah Province (Iran): a, b. Young colony, c, d. Colony after 30 days at 25 °C, e, f. Coccus cells under the light microscope (Bar = $5 \mu m$).

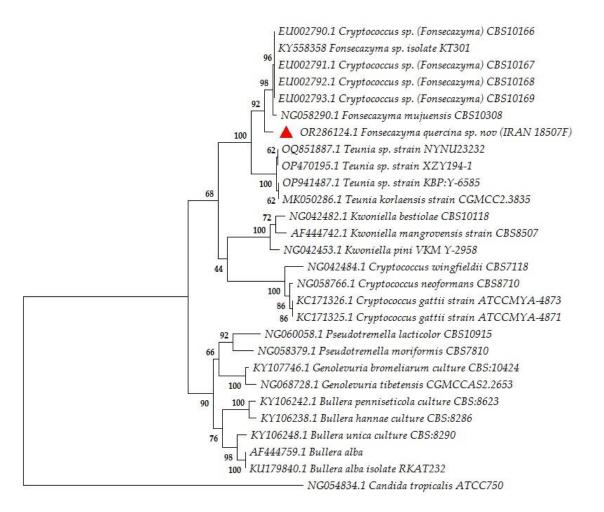
- Molecular phylogenetic

Based on a BLASTn search of the NCBI GenBank nucleotide database, the closest sequence to Fonsecazyma quercina (GenBank accession numbers: ITS; OR286121 and D1/D2; OR286124) was Fonsecazyma sp. isolate KT301 from the Czech Republic (GenBank accession number KY558358; identities = 97.58%, (Mašínová et al. 2018). The phylogenetic reconstruction of 27 ITS and D1/D2 sequences was inferred using distance and cladistic methods. The final aligned data matrix contained 593 characters, including alignment gaps, of which 86 characters were parsimony-informative, 171 were variable, and 419 were conserved. The phylogenetic trees inferred for both ITS and D1/D2 sequences showed the same topology, although there were differences in bootstrap values between equivalent branches (Figs 2-5). In the maximum likelihood method, the Kimura 2-parameter model was determined as the best-fitting nucleotide substitution model of evolution for each dataset based on the Bayesian Information Criterion (BIC) of MEGA X. The tree with the highest log likelihood (-1981.33) is shown in figure 2. In the maximum parsimony analysis, the tree length was 272 with a consistency index (CI) of 0.53, a retention index (RI) 0.84, a composite index = 0.57 for all sites, and 0.45 for parsimony informative sites. One of the most parsimonious trees is shown in figure 3. Phylogenetic analysis revealed that, the sequences of F. quercina were clustered and formed an independent branch with strong statistical support. The species described here as F. quercina Ghobadi & Jamali sp. nov. formed a sister lineage to the other Fonsecazyma species from other countries with high statistical support.

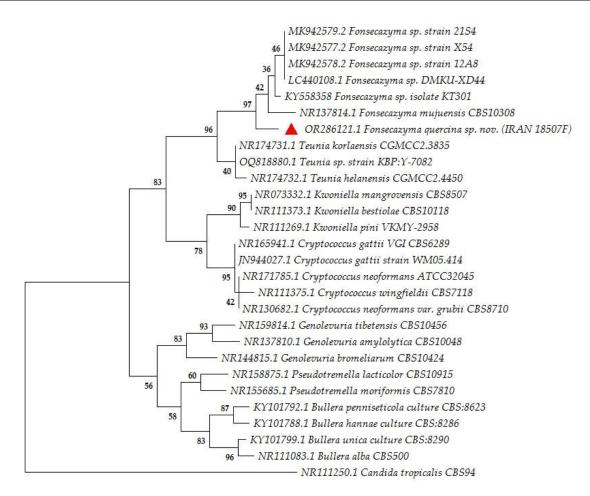
Taxonomy


Fonsecazyma quercina Ghobadi & Jamali sp. nov.

Etymology: The specific epithet quercina refers to the oak genus *Quercus* from which this species was isolated.


Holotype: IRAN: Kermanshah Province, Chahar Zebare-Oliya, 34°13'58.8" N, 46°40'58.3" E, 1562 m, 2.11.2022, in oak forests on a branch of *Quercus brantii* Lind., A. Ghobadi & S. Jamali (IRAN 18507F, GenBank ITS: OR286121 and D1/D2: OR286124).

After three days of growth on PDA medium at 25 °C, the young colonies appeared creamy at first but became yellow as they grew. The colonies had a mucoid and mucilaginous texture, a smooth raised surface, and a complete edge. Under light microscopy, individual cells appeared spherical or coccoid. The isolate had a high ability to utilize and assimilate glucose and trehalose as carbon sources; as well, this isolate was able to utilize sucrose, mannose, maltose, and fructose as carbon sources, but its utilization of cellobiose, sorbitol, and rhamnose was weak. This isolate could not utilize and assimilate galactose, sorbose, lactose, melibiose, arabinose, ribose, and glycine. In addition, the isolate can produce catalase, oxidase, urease, and esterase enzymes but was unable to produce amylase, lipase, lecithinase, protease, and xylanase enzymes. This isolate can grow in the presence of a maximum of 1 M NaCl. It is psychrotolerant (in the range of 6-25 °C) and can grow well at pH 4, 8, and 10.


The type strain was deposited in the culture collection of the Herbarium Ministerii Iranici Agriculturae, under number IRAN 18507F. The name was registered in MycoBank under the number MB852634.

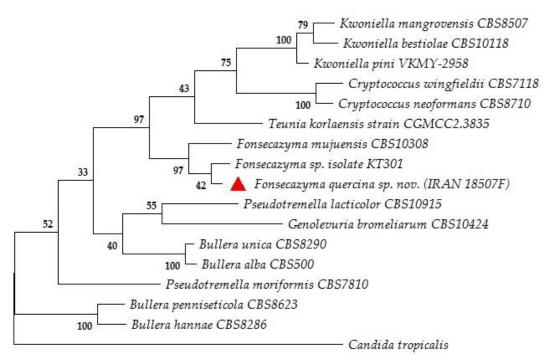

Fig. 2. Phylogenetic tree constructed from D1/D2 domains of the large subunit (LSU or 26S) rRNA gene sequences of *Fonsecazyma quercina* sp. nov. strain (IRAN 18507F) isolated from Persian oak tree bark in Kermanshah Province (Iran) and some sequences from the GenBank with maximum likelihood method in MEGA X software. *Candida tropicalis* ATCC750 was included as an outgroup. Bootstrap percentages are 1000 replicates.

Fig. 3. Phylogenetic tree constructed from D1/D2 domains of the large subunit (LSU or 26S) rRNA gene sequences of *Fonsecazyma quercina* sp. nov. strain (IRAN 18507F) isolated from Persian oak tree bark in Kermanshah Province (Iran) and some sequences from the GenBank with maximum parsimony method in MEGA X software. *Candida tropicalis* ATCC750 was included as an outgroup. Bootstrap percentages are 1000 replicates.

Fig. 4. Phylogenetic tree constructed from the internal transcribed spacer (ITS) gene sequences of *Fonsecazyma quercina* sp. nov. strain (IRAN 18507F) isolated from Persian oak tree bark in Kermanshah Province (Iran), and some sequences from the GenBank with maximum parsimony method in MEGA X software. *Candida tropicalis* ATCC750 was included as an outgroup. Bootstrap percentages are 1000 replicates.

Fig. 5. Phylogenetic tree constructed from concatenated ITS and D1-D2 sequences of *Fonsecazyma quercina* sp. nov. strain (IRAN 18507F) isolated from Persian oak tree bark in Kermanshah Province (Iran), and some sequences from the GenBank with maximum parsimony method in MEGA X software. *Candida tropicalis* was included as an outgroup. Bootstrap percentages are 1000 replicates.

- Characteristics of isolate

The ability of the yeast isolate to assimilate and utilize different carbon sources was investigated. For this purpose, 16 different carbon sources were utilized by the yeast isolate. The results showed that, the considered isolate had a high ability to utilize and assimilate glucose and trehalose as carbon sources, which strongly changed the color of the medium from green to yellow in the test tubes by producing acid from these sources. In addition, this isolate used sucrose, mannose, maltose, and fructose as carbon sources but weakly utilized cellobiose, sorbitol, and rhamnose. This isolate was not able to utilize and assimilate galactose, sorbose, lactose, melibiose, arabinose, ribose, and glycine as the only carbon source. In this study, there were no changes in the control treatments used (Table 2).

The ability of the yeast isolate to produce extracellular enzymes was investigated, and the results showed that, the isolate could produce catalase, oxidase, urease, and esterase enzymes but was unable to produce amylase, lipase, lecithinase, protease, and xylanase enzymes. In this study, the clear halo or sediment around the growth site of the yeast isolate on PDA media supplemented with starch for amylase enzyme, Tween 80 for lipase enzyme, lecithin in egg yolk for lecithinase, casein in skim milk for protease, and xylan for xylanase, failed, which indicates the lack of production of the enzymes to hydrolyze the used substrates; but the yeast isolate immediately after being in the 3% hydrogen peroxide solution was able to produce water and oxygen from the degradation of hydrogen peroxide and cause Additionally, the isolate could oxidize foaming. Tetramethyl-p-phenylenediamine dihydrochloride reagent by producing an oxidase enzyme, which appeared in dark blue. By producing the urease enzyme in less than six hr, this isolate was able to alkalinize the medium by breaking down the urea in the medium into ammonia and changing the color of the medium from orange to red. Unlike Tween 80, this isolate created crystal precipitation by hydrolyzing Tween 20 on the surface of the medium by producing an esterase enzyme (Table 2).

The physiological characteristics of the isolate, such as different temperatures, salinity, and acidity were investigated. The results showed that, the studied yeast isolate could grow in the presence of a maximum of 1 M NaCl (58.44 g/L) and could not grow at concentrations higher than 1 M. The yeast isolate showed its highest growth in neutral acidity (pH = 6). Additionally, the isolate could grow at pH 4, 8, and 10, but it could not grow

at acidic pH 2. The studied yeast isolate is psychrotolerant and can grow well in the range of 6–25 °C, but it was unable to grow at temperatures below and above this range. The results of the effect of physiological characteristics are shown in table 2.

Table 2. Physiological and biochemical characteristics, as well as extracellular enzymatic activity of *Fonsecazyma quercina* sp. nov. strain (IRAN 18507F) isolated from bark samples of a Persian oak tree (Kermanshah Province, Iran)

Characteristic	Reaction**	Characteristic	Reaction**	Characteristic	Reaction**
Extracellular	Extracellular enzyme		+	3M	-
Oxidase	+	Maltose	+	Growth tempera	ature (°C)
Catalase	+	Cellobiose	w+	2	-
Urease	+*	Trehalose	++	6	w+
Amylase	-	Lactose	-	10	+
Lipase	-	Melibiose	-	15	++
Esterase	+	Sorbitol	w+	20	++
Lecithinase	-	Fructose	+	25	++
Protease	-	Arabinose	-	28	w+
Xylanase	-	Ribose	-	30	-
Gelatinase	-	Rhamnose	w+	Growth on pH	
Assimilatio	Assimilation of		-	2	-
Glucose	++	Growth on NaCl		4	+
Galactose	-	0.5 M	++	6	++
Sucrose	+	1 M	+	8	++
Sorbose	-	2 M	-	10	+

[+] Positive; [-] Negative; [++] Strong positive; [w+] Weak positive; M, Molar. * Positive result after six hr; **Result obtained from three independent experiments.

Discussion

Many parts of the world, including threatened habitats such as natural forests, have not yet been sampled for yeasts, and many others have only been superficially studied. Since forests represent hotspots for yeast biodiversity, therefore, it is imperative to study these environments in places where they may soon disappear due to deforestation, conversion, and anthropogenic climate change (Boekhout et al. 2022). In this study, branches of Persian oaks were collected as samples during a field survey of Persian oaks in the Zagros Forest in Kermanshah Province (Iran). After the process of isolating the microorganisms, among the various fungal and yeast isolates that were obtained, one particular yeast isolate (IRAN 18507F) was identified. Upon further analysis of its morphological, biochemical, and physiological characteristics and molecular analysis, it was determined that, this particular isolate represents a new and distinct species. Therefore, the name Fonsecazyma quercina sp. nov. for this novel yeast species is proposed here.

Identification of yeast species is currently performed routinely through the analysis of DNA sequences. The comparisons most frequently employed involve the assessment of nucleotide sequence divergence in D1/D2 domains of the nuclear large subunit rRNA gene and ITS, which is situated between the SSU and LSU rRNA genes (Kurtzman & Robnett 1998, Fell et al. 2000, Scorzetti et al. 2002). In this research, the ITS and D1/D2 regions were subjected to sequencing to determine the yeast isolate species obtained from Persian oak tree bark. The results show that, the closest sequence of the present investigation yeast isolate was Fonsecazyma sp. isolate KT301 from the Czech Republic, with 97.58% identity. Moreover, the phylogenetic analysis revealed that, sequences of the isolate in the present study were clustered and formed an independent branch with strong statistical support. Consequently, an analysis of sequences and phylogenetic trees indicates the novelty of the present investigation strain (IRAN 18507F).

Extreme environments have a variety of stressful and changing environmental conditions that affect the growth of microorganisms (Alcaíno et al. 2015). Therefore, by evolving various mechanisms, they adapt to these environmental conditions and play critical ecological roles in the ecosystem (Margesin et al. 2007). In the present study, the new yeast isolate grew at temperatures between 6-25 °C, suggesting that, it is a psychrotolerant species. Psychrophilic and psychrotolerant bacteria were the main focus of previous studies, but recently, yeasts have also been identified as psychrophilic and psychrotolerant microorganisms (Russell 2006, Thomas-Hall et al. 2010, Singh et al. 2013). Scientists have always been interested in these yeasts because of their potential in various industries (Alcaíno et al. 2015). Therefore, the yeast isolate of this study can also be further investigated in the field of application in various industries. After six hr, the yeast isolate showed the ability to hydrolyze urea in the medium and had a high potential to generate urease enzymes. Urease. an enzyme produced by ureolytic

References

- Alcaíno, J., Cifuentes, V. & Baeza, M. 2015.
 Physiological adaptations of yeasts living in cold environments and their potential applications.
 World Journal of Microbiology Biotechnology 31: 1467–1473. DOI: 10.1007/s11274-015-1900-8.
- Boekhout, T., Amend, A.S., El Baidouri, F., Gabaldón, T.,
 Geml, J., Mittelbach, M., Robert, V., Tan, C.S.,
 Turchetti, B., Vu, D., Wang, Q-M. & Yurkov, A.
 2022. Trends in yeast diversity discovery. Fungal Diversity 114: 491–537.
- Borkar, S.G. 2018. Laboratory Techniques in Plant Bacteriology, CRC Press. 343 pp.
- Brink, B. 2010. Urease test protocol. American Society for Microbiology 1–7. https://asm.org/getattachment/ac4fe214-106d-407c-b6c6-e3bb49ac6ffb/urease-test-protocol-3223.pdf.

microorganisms, hydrolyzes urea into ammonia and carbon dioxide. Microbial urease has many applications in biotechnology, agriculture, medicine, and construction (Mekonnen et al. 2021). In conclusion, this study highlights the importance of investigating underexplored environments to discover novel yeast species. By isolating yeasts from the bark of Persian oak trees in Iran, Fonsecazyma quercina sp. nov., a previously unidentified species was successfully identified veast and characterized here. The novelty of this species was confirmed through DNA analysis, and it was found to exhibit psychrotolerance and produce urease enzymes, indicating its potential for industrial applications. This research underscores the significance of exploring underexplored habitats to uncover new yeast species that possess distinctive and potentially valuable properties.

Acknowledgements

The authors wish to thank Razi University (Kermanshah Province, Iran) authorities for providing all research facilities.

- Bulgari, R., Trivellini, A. & Ferrante, A. 2019. Effects of two doses of organic extract-based biostimulant on greenhouse lettuce grown under increasing NaCl concentrations. Frontiers in Plant Science 9: 1870. DOI: 10.3389/fpls.2018.01870.
- Carrasco, M., Rozas, J.M., Barahona, S., Alcaíno, J., Cifuentes, V. & Baeza, M. 2012. Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiology 12: 251. DOI: 10.1186/1471-2180-12-251.
- Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology Evolution 17: 540–552. DOI: 10.1093/oxfordjournals.molbev.a026334.
- Christensen, W.B. 1946. Urea decomposition as a means of differentiating Proteus and Paracolon cultures from each other and from *Salmonella* and *Shigella*

types. Journal of Bacteriology 52. https://journals.asm.org/journal/jb.

- Corte, L., Rellini, P., Lattanzi, M., Picchetta, C., Fatichenti, F. & Cardinali, G. 2006. Diversity of salt response among yeasts. Annals of Microbiology 56: 363–368. DOI: 10.1007/BF03175033.
- Fell, J.W., Boekhout, T., Fonseca, A., Scorzetti, G. & Statzell-Tallman, A. 2000. Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. International Journal of Systematic and Evolutionary Microbiology 50: 1351–1371. DOI: 10.1099/00207713-50-3-1351.
- Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791. DOI: 10.1111/j.1558-5646.1985.tb00420.x.
- Findley, K., Rodriguez-Carres, M., Metin, B., Kroiss, J., Fonseca, A., Vilgalys, R. & Heitman, J. 2009.
 Phylogeny and phenotypic characterization of pathogenic *Cryptococcus* species and closely related saprobic taxa in the Tremellales. Eukaryotic cell 8(3): 353–361. DOI: 10.1128/ec.00373-08.
- Golubev, W.I., Pfeiffer, I. & Tomashevskaya, M.A. 2008. *Cryptococcus pinus* sp. nov., an anamorphic basidiomycetous yeast isolated from pine litter. International Journal of Systematic and Evolutionary Microbiology 58(8): 1968–1971. DOI: 10.1099/ijs.0.65764-0.
- Hanane, T., Najoua, B., Salsabil, H., Abdellatif, J.I., Dalila, B., Ahmad, I., Bukhari, S.A.R., Irfan, M., Chen, L. & Hicham, B. 2022. Qualitative screening of yeast biodiversity for hydrolytic enzymes isolated from the gastrointestinal tract of a coprophage "*Gymnopleurus sturmi*" and dung of ruminants. Fermentation 8: 692. DOI: 10.3390/fermentation8120692.
- Kumar, D., Kumar, L., Nagar, S., Raina, C., Parshad,R. & Gupta, V.K. 2012. Screening, isolation and production of lipase/esterase producing

- Bacillus sp. strain DVL2 and its potential evaluation in esterification and resolution reactions. Archives of Applied Science Research 4: 1763–1770. http://scholarsresearchlibrary.com/archive. html.
- Kurtzman, C.P., Fell, J.W., Boekhout, T. & Robert, V. 2011. Methods for isolation, phenotypic characterization and maintenance of yeasts. *In* Pp. 87-110: Kurtzman, C.P., Fell, J.W. & Boekhout, T. (eds), The Yeasts (5th. edition). London, Elsevier.
- Kurtzman, C.P., Mateo, R.Q., Kolecka, A., Theelen, B., Robert, V. & Boekhout, T. 2015. Advances in yeast systematics and phylogeny and their use as predictors of biotechnologically important metabolic pathways. FEMS Yeast Research 15 (6). DOI: 10.1093/femsyr/fov050.
- Kurtzman, C.P. & Robnett, C.J. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73: 331–371. DOI: 10.1023/A:1001761008817.
- Lachance, M.A. 2006. Yeast Biodiversity: How Many and How Much?. Biodiversity and ecophysiology of yeasts. Springer, Berlin, Heidelberg.
- Landell, M.F., Inacio, J., Fonseca, A., Vainstein, M.H. & Valente, P. 2009. *Cryptococcus bromeliarum* sp. nov., an orange-coloured basidiomycetous yeast isolated from bromeliads in Brazil. International Journal of Systematic and Evolutionary Microbiology 59(4): 910–913. DOI: 10.1099/ijs.0.005652-0.
- Li, A.-H., Yuan, F.X., Groenewald, M., Bensch, K., Yurkov, A.M., Li, K., Han, P.-J., Guo, L.-D., Aime, M.C. & Sampaio, J.P. 2020. Diversity and phylogeny of basidiomycetous yeasts from plant leaves and soil: proposal of two new orders, three new families, eight new genera and one hundred and seven new species. Studies in Mycology 96: 17–140. DOI: 10.1016/j.simyco.2020.01.002.

- Liu, X.-Z., Wang, Q.M., Göker, M., Groenewald, M., Kachalkin, A., Lumbsch, H.T., Millanes, A., Wedin, M., Yurkov, A. & Boekhout, T. 2015a. Towards an integrated phylogenetic classification of the Tremellomycetes. Studies in Mycology 81: 85–147. DOI: 10.1016/j.simyco.2015.12.001.
- Liu, X.-Z., Wang, Q.M., Theelen, B., Groenewald, M., Bai, F.-Y. & Boekhout, T. 2015b. Phylogeny of tremellomycetous yeasts and related dimorphic and filamentous basidiomycetes reconstructed multiple from gene sequence analyses. Studies in Mycology 81: 1-26. DOI: 10.1016/j.simyco.2015.08.001.
- Maharana, A.K. & Ray, P. 2013. Isolation and screening of cold active extracellular enzymes producing psychrotrophic bacteria from soil of Jammu City. Biosciences Biotechnology Research Asia 10: 267–273.
- Margesin, R., Neuner, G. & Storey, K. 2007. Cold-loving microbes, plants, and animals - fundamental and applied aspects. Naturwissenschaften 94: 77–99. DOI: 10.1007/s00114-006-0162-6.
- Mašínová, T., Yurkov, A. & Baldrian, P. 2018. Forest soil yeasts: Decomposition potential and the utilization of carbon sources. Fungal Ecology 34: 10–19. DOI: 10.1016/j.funeco.2018.03.005.
- Mekonnen, E., Kebede, A., Nigussie, A., Kebede, G. & Tafesse, M. 2021. Isolation and characterization of urease-producing soil bacteria. International Journal of Microbiology 2021: 1-11. DOI: 10.1155/2021/8888641.
- Middelhoven, J. & Kurtzman, C.P. 2003. Relation between phylogeny and physiology in some ascomycetous yeasts. Antonie van Leeuwenhoek 83: 69–74. DOI: 10.1023/A:1022916630030.
- Mishra, S. & Behera, N. 2008. Amylase activity of a starch degrading bacteria isolated from soil receiving kitchen wastes. African Journal of Biotechnology 7 (18): 3326–3331. http://www.academicjournals.org/AJB.

- Morais, P.B., Pagnocca, F.C. & Rosa, C.A. 2006. Yeast
 Communities in Tropical Rain Forests in Brazil
 and other South American Ecosystems.
 Biodiversity and Ecophysiology of Yeasts.
 Springer, Berlin, Heidelberg.
- Nakase, T., Jindamorakot, S., Am-In, S., Potacharoen, W.
 & Tanticharoen, M. 2006. Yeast Biodiversity in Tropical Forests of Asia. Biodiversity and Ecophysiology of Yeasts Springer, Berlin, Heidelberg. DOI: 10.1007/3-540-30985-3_18.
- Nei, M. & Kumar, S. 2000. Molecular Evolution and Phylogenetics, USA, Oxford University Press. 352 pp.
- Ramnath, L., Sithole, B. & Govinden, R. 2017. Identification of lipolytic enzymes isolated from bacteria indigenous to Eucalyptus wood species for application in the pulping industry. Biotechnology Reports 15: 114–124. DOI: 10.1016/j.btre.2017.07.004.
- Russell, N.J. 2006. Antarctic microorganisms: coming in from the cold. Culture 27: http://www.oxoid.com/culture/27-2.pdf.
- Satoh, K., Maeda, M., Umeda, Y., Sugamata, M. & Makimura, K. 2013. Cryptococcus lacticolor sp. nov. and Rhodotorula oligophaga sp. nov., novel yeasts isolated from the nasal smear microbiota of Queensland koalas kept in Japanese zoological parks. Antonie Van Leeuwenhoek 104: 83–93. DOI: 10.1007/s10482-013-9928-y.
- Schaad, N.W., Jones, J.B. & Chun, W. 2001. Laboratory Guide for the Identification of Plant Pathogenic Bacteria (3rd. edition), American Phytopathological Society, St. Paul, USA. 72 pp.
- Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A. & White, M.M. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences 109(16): 6241–6246. DOI: 10.1073/pnas.1117018109.

- Scorzetti, G., Fell, J., Fonseca, A. & Statzell-Tallman, A. 2002. Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Research 2: 495–517. DOI: 10.1111/j.1567-1364.2002.tb00117.x.
- Shin, K.-S., Oh, H.-M., Park, Y.-H., Lee, K.H., Poo, H., Kwon, G.-S. & Kwon, 0.-Y. 2006. Cryptococcus mujuensis sp. nov. and Cryptococcus cuniculi sp. nov., basidiomycetous yeasts isolated from wild rabbit faeces. International Journal of Systematic and Evolutionary Microbiology 56: 2241-2244. DOI: 10.1099/ijs.0.64353-0.
- Singh, P., Tsuji, M., Singh, S. M., Roy, U. & Hoshino, T. 2013. Taxonomic characterization, adaptation strategies and biotechnological potential of cryophilic yeasts from ice cores of Midre Lovénbreen glacier. Svalbard, Cryobiology 167-175. DOI: Arctic. 66: 10.1016/j.cryobiol.2013.01.002.
- Statzell-Tallman, A., Belloch, C. & Fell, J.W. 2008. *Kwoniella mangroviensis* gen. nov., sp. nov. (Tremellales, Basidiomycota), a teleomorphic yeast from mangrove habitats in the Florida Everglades and Bahamas. FEMS Yeast Research 8(1): 103–113. DOI: 10.1111/j.1567-1364.2007.00314.x.
- Strauss, M., Jolly, N., Lambrechts, M. & Van Rensburg, P. 2001. Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts. Journal of Applied Microbiology 91: 182–190. DOI: 10.1046/j.1365-2672.2001.01379.x.

- Thomas-Hall, S.R., Turchetti, B., Buzzini, P., Branda, E., Boekhout, T., Theelen, B. & Watson, K. 2010.
 Cold-adapted yeasts from Antarctica and the Italian Alps-description of three novel species: *Mrakia robertii* sp. nov., *Mrakia blollopis* sp. nov. and *Mrakiella niccombsii* sp. nov. Extremophiles 14: 47–59. DOI: 10.1007/s00792-009-0286-7.
- Vu, D., Groenewald, M., Szöke, S., Cardinali, G., Eberhardt, U., Stielow, B. & Robert, V. 2016.
 DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation.
 Studies in Mycology 85(1): 91–105. DOI: 10.1016/j.simyco.2016.11.007.
- Wang, G.S., Zhou, Y., Xue, L., Li, A.H., Wangmu & Wang, Q.M. 2020. Teunia rosae sp. nov. and Teunia rudbeckiae sp. nov. (Cryptococcaceae, Tremellales), two novel basidiomycetous yeast species isolated from flowers. International Journal Systematic of and Evolutionary 5394-5400. Microbiology 70(10): DOI: 10.1099/ijsem.0.004423.
- Wang, Q.M., Wang, S.A., Jia, J.H. & Bai, F.Y. 2007. *Cryptococcus tibetensis* sp. nov., a novel basidiomycetous anamorphic yeast species isolated from plant leaves. The Journal of General and Applied Microbiology 53(5): 281–285. DOI: 10.2323/jgam.53.281.
- White, T.J., Bruns, T., Lee, S. & Taylor, J. 1990. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. PCR protocols: a guide to methods applications 18: 315–322.