Optimized DNA extraction and purification method from Alchemilla species using polyethylene glycol

Document Type : Research Paper

Authors

1 PhD Student, Department of Biology, Faculty of Science, Guilan University, Rasht 41938-33697, Iran

2 Associate Prof., Department of Biology, Faculty of Science, Guilan University, Rasht 41938-33697, Iran

3 Prof., Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran

4 Associate Prof., Department of Plant Biotechnology, Faculty of Agriculture, Guilan University, Rasht 41996-13776, Iran

Abstract

Pure DNA is essential in various techniques of molecular biology and its extraction from plants to produce large amounts of secondary metabolites is a difficult task. Alchemilla is known to synthesize a large number of secondary metabolites which reduce the quality of the extracted DNA. This study, aimed to set up a method for high-quality DNA isolation from Alchemilla leaf. For this purpose, three extraction methods were examined and a comparison concerning price, simplicity, and security was carried out. We also optimized a CTAB-based method using increasing the volume and concentration of CTAB buffer, lysis time, and cold incubation period, performing six times dilutions, and three times precipitations, adding polyethylene glycol, and removing toxic or expensive materials. The results showed that, 260/280 and 260/230 ratios of extracted DNA by the optimized method with the concentration of 595–387 ng/µL were 1.75–1.82 and 1.56–1.68, respectively. The quality of extracted DNA by this method was significantly higher (p < 0.001) than that of other ways, so that all samples were positive for DNA, as assessed by electrophoresis and PCR. The optimized method was simple, effective, reproducible, relatively non-toxic, and inexpensive. The results revealed that, this method was successful in producing large amounts of high-quality amplifiable DNA.

Keywords


Article Title [Persian]

روش بهینه‌سازی شده جداسازی و تخلیص DNA از جنس Alchemilla با استفاده از پلی‌اتیلن گلیکول

Authors [Persian]

  • سمیرا شوکتیاری 1
  • مرضیه بیگم فقیر 2
  • شاهرخ کاظم پور اصالو 3
  • محمد مهدی سوهانی 4
1 دانشجوی دکتری سیستماتیک گیاهی، گروه زیست‌شناسی، دانشکده علوم، دانشگاه گیلان، کد پستی 41938-33697، رشت، ایران
2 دانشیار گروه زیست‌شناسی، دانشکده علوم ، دانشگاه گیلان، کد پستی ۳۳۶۹۷-۴۱۹۳۸، رشت، ایران
3 استاد گروه زیست‌شناسی گیاهی، دانشکده علوم زیست شناسی، دانشگاه تربیت مدرس، صندوق پستی 111-14115، تهران، ایران
4 دانشیار گروه بیوتکنولوژی گیاهی، دانشکده کشاورزی، دانشگاه گیلان، کد پستی 13776-41996، رشت، ایران
Abstract [Persian]

استخراج DNA برای مطالعات مولکولی ضروری بوده و استخراج خالص آن از گیاهان با مقادیر زیاد متابولیت‌های ثانویه بسیار مشکل است. جنس Alchemiila L. متابولیت‌های ثانویه متنوعی تولید می‌کند که باعث کاهش کیفیت DNA استخراجی می‌شوند. این مطالعه، با هدف استخراج آسان و ارزان DNA با کمیت و کیفیت بالا از نمونه‌های برگ این جنس انجام شد و نهایتا، سه روش استخراج DNA با هم مقایسه گردیدند. در انتخاب روش بهینه، چند نکته اساسی شامل هزینه، سادگی و حذف مواد شیمیایی خطرناک مدنظر بود. این مطالعه، با ایجاد تغییرات قابل توجهی در روش CTAB از قبیل تغییر حجم و غلظت بافر استخراج، مدت زمان انکوباسیون‌ها، انجام شش مرحله شستشو و سه مرحله رسوب، افزودن پلی‌اتیلن گلیکول و ﻫﻤﭽﻨﻴﻦ ﺣﺬف مواد ﭘﺮﻫﺰﻳﻨﻪ و خطرناک مانند نیتروژن مایع و بتا مرکاپتواتانول، قادر به جداسازی ایمن و ارزان، مقدار زیادی DNA با کیفیت مطلوب شد. کمیت و کیفیت DNAهای استخراجی توسط روش نانومتری، الکتروفورز ژل آگارز و واکنش زنجیره‌ای پلیمراز مشخص گردید. طبق نتایج به دست آمده در این مطالعه، نسبت ۲۸۰/۲۶۰ DNA استخراجی به روش بهینه‌سازی شده، بین 75/1 تا 82/1و نسبت ۲۳۰/۲۶۰ بین 56/1 تا 68/1 با غلظت ۳۸۷ تا 595 نانوگرم در میکرولیتر اندازه‌گیری شد که این اعداد به طور قابل توجهی (p < 0.001) از اعداد مربوط به DNA حاصل از سایر روش‌ها بیشتر بود. پروتکل بهینه‌سازی شده، ساده، مؤثر، قابل تکرار، نسبتا غیرسمی و ارزان بود. نتایج این تحقیق همچنین نشان داد پروتکل مذکور در تولید مقادیر کافی از DNA با کیفیت قابل قبول برای سنجش‌های ژنتیکی موفق بود.

Keywords [Persian]

  • اسپکتروفتومتری
  • ترکیبات پلی‌ساکارید
  • ترکیبات فنلی
  • خلوص اسید نوکلیک
  • متابولیت‌های ثانویه
Aboul-Maaty, N.A.F. & Oraby, H.A.S. 2019. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bulletin of the National Research Centre 43: 25.
Ahmed, I., Islam, M., Arshad, W., Mannan, A. & Mirza, B. 2009. High-quality plant DNA extraction for PCR: An easy approach. Journal of Applied Genetics 50(2): 105–107.
Amani, J., Kazemi, R., Abbasi, A.R. & Salmanian, A.H. 2011. A simple and rapid leaf genomic DNA extraction method for polymerase chain reaction analysis. Iranian Journal of Biotechnology 9(1): 69–71.
Anuradha, H.J., Vijayan, K., Nair, C.V. & Manjula, A. 2013. A novel and efficient method for the isolation of genomic DNA from Mulberry (Morus L.). Emirates Journal of Food and Agriculture 25(2): 124–131.
Bi, I.V., Harvengt, L., Chandelier, A., Mergeai, G. & Jardin, P. 1996. Improved RAPD amplification of recalcitrant plant DNA by the use of activated charcoal during DNA extraction. Plant Breeding 115(3): 205–206.
Bloomfield, V.A. 1996. DNA Concentration Current Opinion in Structural Biology 6: 334–341.
Box, M.S., Coustham, V., Dean, C. & Mylne, J.S. 2011. Method: a simple phenol-based method for 96-well extraction of high-quality RNA from Arabidopsis. Plant Methods 7(1): 1–10.
Chomczynski, P. & Sacchi, N. 2006. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Anal. Biochemistry 1(2): 581–585.
Cheng, C., Jia, J.L. & Ran, S.Y. 2015. Polyethylene glycol and divalent salt-induced DNA reentrant condensation revealed by single-molecule measurements. Soft Matter Research 11(19): 3927–3935.
Dabo, S.M., Mitchell, E.D. & Melcher, U. 1993. A method for the isolation of nuclear DNA from Cotton (Gossypium) leaves. Analytical Biochemistry 210(1): 34–38.
Del Castillo Agudo, L., Gavidia, I., Perez-Bermudez, P. & Segura, J. 1995. PEG precipitation, a required step for PCR amplification of DNA from wild plants of digitalis obscura L. BioTechniques 18(5): 766–768.
Doyle, J.J. & Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bullentin 19(1): 11–15.
Duckstein, S.M., Lotter, E.M., Meyer, U., Lindequist, U. & Stintzing, F.C. 2013. Phenolic constituents from Alchemilla vulgaris L. and A. mollis (Buser) Rothm. at different dates of harvest. Zeitschrift für Naturforschung. Section C, Biosciences 68(1–2): 529–540.
Falchero, L., Coppa, M., Fossi, A., Lombardi, G., Ramella, D. & Tava A. 2009. Essential oil composition of Lady’s Mantle (Alchemilla xanthochlora Rothm.) growing wild in alpine pastures. Natural Product Research 23(15): 1367–1372.
Felser, C. & Schimmer, O. 1999. Flavonoid glycosides from Alchemilla speciosa. Planta Medica 65(7): 668–670.
Fraisse, D., Heitz, A., Carnat, A., Carnat, A.P. & Lamaison, J.L. 2000. Quercetin 3-arabinopyranoside, a major flavonoid compound from Alchemilla xanthochlora. Fitoterapia 71(4): 463–464.
Gaudeul, M. & Rouhan, G. 2013. A plea for modern botanical collections to include DNA-friendly material. Trends in Plant Science 18: 184–185.
Gehrke, B., Bräuchler, C., Romoleroux, K., Lundberg, M., Heubl, G. & Eriksoon T. 2008. Molecular phylogenetics of Alchemilla, Aphanes and Lachemilla (Rosaceae) inferred from plastid and nuclear intron and spacer DNA sequences, with comments on generic classification. Molecular Phylogenetics and Evolution 47(3): 1030–1044.
Gehrke, B., Kandziora, M. & Pirie, M.D. 2016. The evolution of dwarf shrubs in alpine environments: A case study of Alchemilla in Africa. Annals of Botany 117(1): 121–131.
Greco, M., Sáez, C.A., Brown, M.T.& Bitonti, M.B.2014. A Simple and effective method for high-quality co-extraction of genomic DNA and total RNA from low biomass Ectocarpus siliculosus, the model brown alga. PLOS ONE 9(5): e96470.
John, M.E. 1992. An efficient method for isolation of RNA and DNA from plants containing polyphenolics. Nucleic Acids Research 20(9): 2381.
Kawata, M., Matsumura, Y., Oikawa, T., Kimizu, M., Fukumoto, F. & Koroda, S. 2003. Analysis of DNA extraction buffer components from plant tissue by polymerase chain reaction. Analytical Biochemistry 318(2): 314–317.
Katterman, F.R.H. & Shattuck, V.I. 1983. An effective method of DNA isolation from the mature leaves of Gossypium species that contain large amounts of phenolic terpenoids and tannins. Preparative Biochemistry 13(4): 347–359.
Lade, B.D., Patil, A.S. & Paikrao, H.M. 2014. Efficient genomic DNA extraction method from medicinal rich passiflora foetida containing high level of polysaccharide and polyphenol. Springer Plus
3(1): 1–7.
Mafra, I., Silva, S., Moreira, E., da Silva, C., Beatriz, M. & Oliveriia, P.P. 2008. Comparative study of dna extraction methods for soybean derived food products. Food Control 19(12): 1183–1190.
Moyo, M., Amoo, S.O., Bairu, M.W., Finnie, J.F. & Van Staden, J. 2008. Optimising DNA isolation for medicinal plants. South African Journal of Botany 74(4): 771–775.
Natarajan, V.P., Zhang, X.,Morono, Y., Inagaki, F. & Wang, F. 2016. A modified SDS-based DNA extraction method for high quality environmental DNA from seafloor environments. Frontiers in Microbiology 7: 986.
Riahi, M., Babaei, M. & Ghahremaninejad, F. 2019. Genomic DNA isolation from Scrophularieae dried leaves using a simple, high-throughput method. Bangladesh Journal of Botany 48(4): 1231–1235.
Saboora, A., Amiri Rad, M., Asgarani, E. & Radjabian, T. 2019. Comparison study of three methods for genomic DNA extraction from fresh and herbarium leaf specimens of Achillea wilhelmsii C. Koch. Nova Biologica Reperta 5(4): 458–465.
Sang, T., Crawford, D.J. & Stuessy, T.F. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany 84(8): 1120–1136.
Stulnig, T.M. & Amberger, A. 1994. Exposing contaminating phenol in nucleic acid preparations. BioTechniques 16(3): 402–404.
Sun, Y., Skinner, D.Z., Liang, G.H. & Hulbert, S.H. 1994. Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theoretical and Applied Genetics 89(1): 26–32.
Tate, J.A. & Simpson, B.B. 2003. Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Systematic Botany28(4): 723–737.
Trendafilova, A., Todorova, M., Gavrilova, A. & Vitkova, A. 2012. Flavonoid glycosides from Bulgarian endemic Alchemilla achtarowii Pawl. Biochemical Systematics and Ecology 43: 156–158.
Varma, A., Padh, H. & Shrivastava, N. 2007. Plant genomic DNA isolation: An art or a science. Biotechnology Journal2(3): 386–392.
Weishing, K., Nybom, H., Wolff, K. & Meyer, W. 1995. DNA Isolation and Purification. Pp. 44–59. In: DNA Fingerprinting in Plants and Fungi. CRC Press, Boca Raton, Florida, USA.
Youssef, M., Valdez-Ojed, R., Ku-Cauich, J.R. & Escobedo-Gracia Medrano, R.M. 2015. Enhanced method for isolation of plant genomic DNA. Agriculture and Environmental Science 4(2): 172–180.
Volume 21, Issue 2 - Serial Number 60
December 2020
Pages 218-230
  • Receive Date: 12 August 2020
  • Revise Date: 19 October 2020
  • Accept Date: 26 October 2020
  • Publish Date: 01 December 2020