Systematics of Alhagi: molecular phylogeny and morphology revisited

Document Type : Systematics and Biodiversity of Plants

Authors

1 PhD Student, Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Research Associate Prof., Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran

3 Research Prof., Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran

4 Associate Prof., Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

Alhagi is a small genus of desert or semi-desert shrubs with about six species widely distributed throughout northern Africa, eastern Mediterranean, the Middle East to the Central Asia, and small parts of India and China. Despite previous molecular and morphological studies on the genus, the taxonomy of Alhagi has been remained controversial. In order to delimit natural groups as well as to clarify interspecific relationships of Alhagi species distributed in Iran, 45 ingroup taxa representing 30 accessions of the genus Alhagi and 15 species from the sister genera, as well as two species, namely, Astragalus arthuri and Colutea persica as outgroups were selected. The nuclear ribosomal DNA internal transcribed spacer was employed for phylogenetic reconstructions. Phylogenetic analyses were performed using maximum parsimony, maximum likelihood and Bayesian inference. The obtained results recovered Alhagi accessions as a well-supported monophyletic group. All three traditionally recognized species in Iran split into two distinct morphologically well-supported lineages similar to splits graph. The results showed that, Alhagi maurorum and
A. graecorum are recognized as two distinct species distributed in two phytogeographical regions of Irano-Turanian and Saharo-Sindian. As a complementary taxonomic treatment, the diagnostic key and description of the species are also provided herewith.
 

Keywords


Article Title [Persian]

سیستماتیک جنس خارشتر: بررسی مجدد فیلوژنی مولکولی و ریخت‌شناسی

Authors [Persian]

  • آرزو امیرخسروی 1
  • یونس عصری 2
  • مصطفی اسدی 3
  • ایرج مهرگان 4
1 دانشجوی دکتری، گروه زیست‏شناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 دانشیار پژوهش، مؤسسه تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران
3 استاد پژوهش، مؤسسه تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران
4 دانشیار گروه زیست‏شناسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
Abstract [Persian]

خارشتر (Alhagi) جنسی کوچک از تیره باقلاییان شامل شش گیاه بوته‏ای بیابانی و نیمه‌بیابانی می‌باشد که به ‏طور گسترده‏ای در سراسر شمال آفریقا، شرق مدیترانه و از خاورمیانه به سمت آسیای مرکزی و بخش‏های کوچکی از هند و چین پراکنش یافته است. به‏رغم مطالعات ریخت‌شناختی و مولکولی گذشته روی این جنس، مباحث مربوط به تاکسونومی آن به ‏صورت بحث‏برانگیز باقی مانده است. در راستای تعیین گروه‌های طبیعی و روشن ‏شدن روابط بین گونه‏های پراکنش یافته در ایران، در این مطالعه، 45 آرایه به‏ عنوان درون‏گروه شامل 30 نمونه از جنس خارشترو 15 گونه از جنس‏های خویشاوند به‏ عنوان درون‏گروه و دو گونه به اسامیAstragalus arthuri  و Colutea persica به‏ عنوان برون‏گروه انتخاب شدند. از توالی‏های ریبوزومی هسته‏ای ناحیه فاصله‏گذار رونویسی‏شونده داخلی برای مطالعات فیلوژنی استفاده شد. آنالیزهای فیلوژنی با استفاده از روش‏های بیشینه صرفه‏جویی، بیشینه درست‏نمایی و Bayesian انجام شد. نتایج حاصل نشان داد که اعضای جنس مذکور، در یک گروه تک‏تبار با حمایت خوب قرار گرفته‏اند، به‏ طوری که سه گونه شناخته ‏شده در مفهوم Rechinger برای ایران، به دو دودمان مجزا با حمایت و ویژگی‏های متمایز ریخت‌شناختی تقسیم شده‌اند که مشابه با نتایج حاصل از splits graph است. طبق نتایج به دست آمده، Alhagi maurorum و A. graecorum به‏ عنوان دو گونه متمایز شناخته شدند که در دو ناحیه جغرافیایی گیاهی، ایران-تورانی و صحرا-سندی، پراکنش یافته‏اند. همچنین، پس از بررسی کامل تاکسونومیکی، کلید شناسایی و شرح این گونه‌ها ارایه گردید.
 
 

Keywords [Persian]

  • باقلاییان
  • تاکسونومی
  • روابط فیلوژنتیکی
  • Alhagi graecorum
  • A. maurorum
Ahangarian, S., Kazempour Osaloo, Sh. & Maassoumi, A.A. 2007. Molecular phylogeny of the tribe Hedysareae with special reference to Onobrychis (Fabaceae) as inferred from nrDNA ITS sequences. The Iranian Journal of Botany 13(2): 64–74.
Amirahmadi, A., Kazempour Osaloo, Sh., Moein, F., Kaveh, A. & Maassoumi, A.A. 2014. Molecular systematics of the tribe Hedysareae (Fabaceae) based on nrDNA ITS and plastid trnL-F and matK sequences. Plant Systematics and Evolution 300(4): 729–747.
Awmack, C. & Lock, J. 2002. The genus Alhagi (Leguminosae: Papilionoideae) in the Middle East. Kew Bulletin 57(2): 435–443.
Boissier, E. 1872. Alhagi. Pp. 588–589. In: Flora Orientalis, Vol. 2. Genevae, Basilae and Lugundi.
Bryant, D. & Moulton, V. 2004. Neighbor-Net: An agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution 21(2): 255–265.
Carine, M.A., Robba, L., Little, R., Russel, S. & Guerra, A.S. 2007. Molecular and morphological evidence for hybridization between endemic Canary Island Convolvulus. Botanical Journal of the Linnean Society 154(2): 187–204.
Chamberlain, D.F. 1970. Alhagi.Pp. 596–597. In: Davis, P.H. (ed.), Flora of Turkey and the East Aegean Island, Vol. 3. Edinburgh University Press, Edinburg.
Douzery, E., Pridgeon, A., Kores, P., Linder, H.P., Kurzweil, H. & Chase, M. 1999. Molecular phylogenetics of Disease (Orchidaceae): a contribution from nuclear ribosomal ITS sequences. American Journal of Botany 86(6): 887–899.
Cunningham, C.W. 1997. Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution 14(7): 733–740.
Duan, L.J., Wen, J.N., Yang, X., Liu, P.L., Arslan, E., Ertuğrul, K. & Chang, Z.Y. 2015. Phylogeny of Hedysarum and tribe Hedysareae (Leguminosae: Papilionoideae) inferred from sequence data of ITS, matK, trnL-F and psbA-trnH. Taxon 64(1): 49–64.
Edgar, R.C. 2004. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792–1797.
Farris, J.S., Källersjö, M., Kluge, A.G. & Bult, C. 1994. Testing significance of incongruence. Cladistics 10(3): 315–319.
Fedtschenko, B.A. 1972. Hedysarum L. (Leguminosae). Pp. 199–243. In: Komarov, V.L., Shishkin, B.K. & Bobrov, E.G. (eds), Flora of the USSR, Vol. 13. Israel Program for Scientific Translation, Jerusalem.
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4): 783–791.
Frajman, B. & Oxelman, B. 2007. Reticulate phylogenetics and phytogeographical structure of Heliosperma (Sileneae, Caryophyllaceae) inferred from chloroplast and nuclear DNA sequences. Molecular Phylogenetics and Evolution 43(1): 140–155.
Ghahremaninejad, F. 2004. Value of trichome characteristics for separating of bifurcating Astragalus (Fabaceae) on sectional level. Turkish Journal of Botany 28(1/2): 241–245.
Grimm, G.W. & Denk, T. 2008. ITS evolution in Platanus (Platanaceae): Homoeologues, pseudogenes and ancient hybridization. Annals of Botany 101(3): 403–419.
Hassler, M. 2019. World Plants: Synonymic Checklists of the Vascular Plants of the World (version Nov. 2018). In: Roskov, Y., Ower, G., Orrell, T., Nicolson, D., Bailly, N., Kirk, P.M., Bourgoin, T., DeWalt, R.E., Decock, W., Nieukerken, E., Zarucchi, J. & Penev, L. (eds). Species 2000 & ITIS Catalogue of Life, 25th Mar. 2019. Digital resource from: www.catalogueoflife.org/col. Species 2000: Naturalis, Leiden, Netherlands.
Huson, D.H. 1998. SplitsTree: A program for analysing and visualizing evolutionary data. Bioinformatics 14(1): 68–73.
Keller, B.A. & Shaparenko, K.K. 1933. Materials for a systematic and ecological monograph of Alhagi Tourn. ex Adans. Sovetsk Botanika 3–4: 150–185 (In Russian).
Langran, X. & Larsen, K. 2010. Alhagi. Pp. 526–527. In: Wu, Z.Y., Raven, P.H. & Hong, D.Y. (eds), Flora of China, Vol. 10 (Fabaceae). Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis.
Liu, P.-L., Wen, J., Duan, L., Arslan, E., Ertuğrul, K. & Chang, Z.-Y. 2017. Hedysarum L. (Fabaceae: Hedysareae) is not monophyletic-Evidence from phylogenetic analyses based on five nuclear and five plastid sequences. PLoS ONE 12(1): e0170596.
Lock, J.M. & Simpson, K. 1991. Legume of the West Asia: a check-list. Royal Botanic Gardens, Kew, London, 274 pp.
Mabberly, D.J. 2017. Mabberly's Plant-book: A Portable Dictionary of Plants, Their Classification and Uses. 4th edition. Cambridge University Press, Cambridge.
Meikle, R.D. 1977. Flora of Cyprus, Vol. 1. Bentham-Moxon Trust, Royal Botanic Gardens, Kew, London, 832 pp.
Nylander, J.A.A. 2004. MrModeltest version 2. Program Distributed by the Author. Evolutionary Biology Center, Uppsala University, Uppsala.
Page, D.M. 2001. Treeview (Win32) version 1.6.6. Available from: https://treeview.software.informer.com/1.6.
Posada, D. & Buckley, T.R. 2004. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53(5): 793–808.
Ramdhani, S., Cowling, R.M. & Barker, N.P. 2010. Phylogeography of Schotia (Fabaceae): Recent evolutionary processes in an ancient thicket biome lineage. International Journal of Plant Sciences 171(6): 626–640.
Rechinger, K.H. 1984. Alhagi. Pp. 470–475. In: Rechinger K.H. (ed.), Flora Iranica: Papilionaceae II, No. 157. Akademische Druck- und Verlagsanstalt, Graz.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542.
Schulte, K., Silvestro, D., Kiehlmann, E., Vesely, S., Novoa, P. & Zizka, G. 2010. Detection of recent hybridization between sympatric Chilean Puya species (Bromeliaceae) using AFLP markers
and reconstruction of complex relationships. Molecular Phylogenetics and Evolution57(3):  1105–1119.
Sheidai, M., Yazdanbakhsh, Z., Assadi, M. & Moussavi, M. 2001. Cytology and morphometry study of Alhagi (Leguminosae) species in Iran. Nordic Journal of Botany 21(1): 83–91.
Swofford, D.L. 2002. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), 4.0b4a. Sinauer Associates, Sunderland, Massachusetts.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.
Townsend, C.C. 1974. Alhagi. Pp. 494–503. In: Townsend, C.C. & Guest, E. (eds), Flora of Iraq, Vol. 3. Ministry of Agriculture of the Republic of Iraq, Baghdad.
Turland, N.J., Wiersema, J.H., Barrie, F.R., Greuter, W., Hawksworth, D.L., Herendeen, P.S., Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold, K., May, T.W., McNeill, J., Monro, A.M., Prado, J., Price, M.J. & Smith, G.F. (eds). 2018. International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159. Glashütten: Koeltz Botanical Books. https://doi.org/10.12705/Code.2018.
Weiss-Schneeweiss, H., Tremetsberger, K., Schneeweiss, G.M., Parker, J.S. & Stuessy, T.F. 2008. Karyotype diversification and evolution in diploid and polyploid South American Hypochaeris (Asteraceae) inferred from rDNA localization and genetic fingerprint data. Annals of Botany 101(7): 909–918.
Yakovelov, G.P. 1979. Notes on the taxonomy of the genus Alhagi Gagneb (Fabaceae). Botanicheskii Zhurnal 64: 1794–1799.
Zahran, M. & Willis, A. 1992.The vegetation of Egypt. Springer, Netherlands, 424 pp.
Zarre, S. 2003. Hair micromorphology and its phylogenetic application in thorny speices of Astragalus (Fabaceae). Botanical Journal of Linnean Society 143: 323–330.