Biodiversity of mycorrhizal fungi and evaluation of optimal conditions for their occurrence in soil to increase sugarcane yield

Document Type : Systematics and Biodiversity of Fungi

Authors

1 Research Instructor, Department of Botany, Iranian Research Institute of Plant Protection, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran

2 Research Prof., Department of Weed Research, Iranian Research Institute of Plant Protection, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran

3 Researcher of Khuzestan Research and Training Institute for the Development of Sugarcane and Related Industries, Ahvaz, Iran

10.22092/bot.j.iran.2024.366675.1395

Abstract

Mycorrhizal fungi play a crucial role in promoting the growth and yield of agricultural plants, including sugarcane. To evaluate optimal conditions for these fungi and enhance sugarcane yields in Khuzestan Province (Iran), the species and spore density of mycorrhizal fungi were investigated in a research project across eight sugarcane cultivation and industry companies. Combined soil samples were collected from 25 sub-samples of each 64 selected farms and analyzed in the laboratory. The spores were isolated using wet sieving and decanting method followed by sucrose centrifugation used for determination of fungal species and spore density. Meanwhile, factors such as the physicochemical properties of the soil, crop rotation and ratoon age were measured and recorded, and their impact on spore density and sugarcane yield was calculated statistically. A direct and intimate correlation was also discovered between the density of spores in the soil and the yield of sugarcane, with the best outcomes found in well-drained fields (adequate sand), a neutral to slightly alkaline pH, sufficient moisture, and controlled levels of nitrogen, phosphorus, and potassium. On the other hand, crop rotation with plants like alfalfa or wheat which are mycorrhizal dependent as well as allowing fields to go fallow, and using fresh ratoon also led to an increase in the density of mycorrhizal fungi spores and sugarcane yield.
 
 

Keywords

Main Subjects


Article Title [Persian]

تنوع زیستی قارچ‌های میکوریزی و ارزیابی شرایط بهینه وقوع آن‌ها در خاک برای افزایش علمکرد نیشکر

Authors [Persian]

  • سیما زنگنه 1
  • مهدی مین‌باشی 2
  • کوروش طاهرخانی 3
1 مربی پژوهش بخش تحقیقات رستنی‌ها، مؤسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران
2 استاد پژوهش بخش تحقیقات علف‌های هرز، مؤسسه تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران
3 پژوهشگر مؤسسه تحقیقات و آموزش توسعه نیشکر و صنایع جانبی خوزستان، اهواز، ایران
Abstract [Persian]

قارچ‌های میکوریزی از موجودات مهم خاک هستند که به رشد و محصول‌دهی بیشتر گیاهان زراعی از جمله نیشکر کمک می‌کنند. برای مشخص شدن شرایط مناسب برای قارچ‌های میکوریزی و در نتیجه افزایش عملکرد نیشکر در مزارع استان خوزستان، تنوع گونه‌ای و تراکم هاگ قارچ‌ها، در مزارع هشت شرکت کشت و صنعت نیشکر مورد بررسی قرار گرفت. نمونه‌های ترکیبی خاک، حاصل از 25 نمونه فرعی از هر 64 مزرعه انتخابی به آزمایشگاه منتقل شدند. هاگ‌ها با روش الکِ تر و سانتریفوژ با محلول ساکارز از خاک جداسازی و جمع‌آوری شدند و برای محاسبه تعیین گونه قارچ‌ها و تراکم هاگ در خاک مورد استفاده قرار گرفتند. سپس عواملی همچون خصوصیات فیزیکوشیمیایی خاک، تناوب زراعی، سن راتون و ارقام نیشکر اندازه‌گیری و ثبت گردید و تاثیر آن‌ها بر میزان تراکم هاگ و عملکرد نیشکر، به صورت آماری محاسبه شد. حاصل بررسی میکروسکوپی هاگ‌ها در تحقیق حاضر، ضمن تشخیص 30 گونه قارچ میکوریزی، مشخص نمود که بین میزان تراکم هاگ‌ها در خاک و عملکرد نیشکر ارتباط مستقیم و نزدیکی وجود دارد و بهترین نتیجه در مزارعی با زهکشی مناسب (ماسه کافی)، با pH خنثی تا قدری قلیایی، رطوبت کافی و مقادیر کنترل شده نیتروژن، فسفر و پتاسیم به دست می‌آید. از سوی دیگر، تناوب زراعی با گیاهانی مانند یونجه و گندم که وابسته به همزیستی میکوریزی هستند یا آیش زمین زراعی و همچنین استفاده از راتون تازه در هر کشت باعث افزایش تراکم هاگ قارچ‌های میکوریزی و عملکرد نیشکر شده است.

Keywords [Persian]

  • آیش
  • استان خوزستان
  • تناوب زراعی
  • تراکم هاگ
  • راتون
  • ریزوسفر
Ambrosano, E.J., Azcón, R., Cantarella, H., Ambrosano, G.M.V., Schammass, E.A. & Muraoka, T. 2010. Crop rotation biomass and arbuscular mycorrhizal fungi effects on sugarcane yield. Scientia Agricola 67: 692–701.
Anderson, J.M. & Ingram, J.S. 1994. Tropical soil biology and fertility: a handbook of methods. Soil Science 157(4): 265. DOI: 10.2307/2261129.
Błaszkowski, J. 2012. Glomeromycota. W. Szafer Institute of Botany, Polish Academy of Sciences. 
Davani, D. 2014. Sugarcane Farming. Tehran, Institute of Technical Vocational Higher Education. Ministry of Jihad-e-Agriculture (In Persian).
Friberg, S. 2001. Distribution and diversity of arbuscular mycorrhizal fungi in traditional agriculture on the Niger inland delta, Mali, West Africa. CBM: Skriftserie 3: 53–80.
Furlan, V., Bartschi, H. & Fortin, J.A. 1980. Media for density gradient extraction of endomycorrhizal spores. Transactions of the British Mycological Society 75(2): 336–338.
Galvez, L., Doudds, D.D. & Wagoner, P. 2001. Tillage and farming system affect AM fungus populations, mycorrhizal formation, and nutrient uptake by winter wheat in a high-P soil. American Journal of Alternative Agriculture 16: 152–160. DOI: 10.1017/S0889189300009139.
Gerdemann, J.W. & Nicolson, T.H. 1963. Spores of mycorrhizal fungi isolated from soil by wet sieving and decanting. Transactions of the British Mycological Society 46: 235–244. DOI: 10.1016/S0007-1536(87)80216-4.
Johnson, D., Leake, J.R. & Read, D.J. 2006. Role of arbuscular mycorrhizal fungi in carbon and nutrient cycling in grassland. Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge. Pp. 129–150.
Leps, J. & Smilauer, P. 2003. Multivariate
Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge. DOI: 10.1017/CBO9780511615146.
Matamoros, M.A., Baird, L.M., Escuredo, P.R., Dalton, D.A., Minchin, F.R., Iturbe-Ormaetxe, I., Rubio, M.C., Moran, J.F., Gordon, A.J. & Becana, M. 1999. Stress induced legume root nodule senescence: Physiological, Biochemical, and Structural Alterations Plant Physiology 121(1): 97–112. DOI: 10.1104/pp.121.1.97.
Mcmillen, B., Juniper, S. & Abbott, L.K. 1998. Inhibition of hyphal growth of a vesicular-arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biology and Biochemistry 30: 1639–1646. DOI: 10.1016/S0038-0717(97)00204-6.
Mohammad, M.J., Malkawi, H.I. & Shibli, R. 2003. Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. Journal of plant nutrition 26(1): 125–137. DOI: 10.1081/PLN-120016500.
Mohammad, M.J., Pan, W.L. & Kennedy, A.C. 1995. Wheat responses to vesicular-arbuscular mycorrhizal fungal inoculation of soils from eroded toposequences. Soil Science Society of America Journal 59: 1086–1090. DOI: 10.2136/sssaj1995.03615995005900040020x.
Nongkling, P. & Kayang, H. 2017. Soil physicochemical properties and its relationship with AMF spore density under two cropping systems. Current Research in Environmental and Applied Mycology 7(1): 33–39. DOI: 10.5943/cream/7/1/5.
Oliveira, A.N. & Oliveira, L.A. 2010. Influence of edaphic-climatic factors on the sporulation and colonization of arbuscular mycorrhizal fungi in two Amazonian native fruit species. Brazilian Archives of Biology and Technology 53: 653–661. DOI: 10.1590/S1516-89132010000300021.
Panwar, V., Meghvansi, M.K. & Sazada, S. 2011. Short-term temporal variation in sporulation dynamics of arbuscular mycorrhizal (AM) fungi and physico-chemical edaphic properties of wheat rhizosphere. Saudi Journal of Biological Sciences 18(3): 247–254. DOI: 10.1016/j.sjbs.2010.12.012.
Powell, C.L. 1984. Field inoculation with VA mycorrhizal fungi. Pp. 205–222. In: Powell, C.L. & Bagyaraj, D.J. (eds), VA Mycorrhiza. CRC Press, Boca Raton, Florida.
Quimet, R., Camir, E.C. & Furlan, V. 1996. Effect of soil K, Ca and Mg saturation and endomycorrhization on growth and nutrient uptake of sugar maple seedlings. Plant Soil 179: 207–216. DOI: 10.1007/BF00009330.
Robson, A.D., Abbott, L.K. & Malajczuk, N. 1994. Management of mycorrhizas in agriculture, horticulture and forestry: Proceedings of an International Symposium on Management of Mycorrhizas in Agriculture, Horticulture and Forestry, 28 Sept.–2 Oct. 1992, Perth, WA, Australia.
Schenk, N.C. & Perez, Y. 1988. Manual for the Identification of VA Mycorrhizal fungi. 241 pp.
Sharma, A., Sinharoy, S. & Bisht, N.C. 2023. The mysterious non‐arbuscular mycorrhizal status of Brassicaceae species. Environ-mental Microbiology 25(5): 917–930. DOI: 10.1111/1462-2920.16339.
Shrivastava, A.K., Srivastava, A.K. & Solomon, S. 2011. Sustaining sugarcane productivity under depleting water resource. Current Science 101: 748–754. https://www.jstor.org/stable/24078662.
Smith, S.E. & Read, D.J. 1997. Mycorrhizal Symbiosis. Academic Press, London.
Surendran, U. & Vani, D. 2013. Influence of arbuscular mycorrhizal fungi in sugarcane productivity under semiarid tropical agro ecosystem in India. International Journal of Plant Production 7(2): 269–277. http://sid.ir/En/VEWSSID/J_pdf/124220130206.pdf.
Sylvia, D. 1999. Mycorrhizal Symbioses. Pp. 408–426. In: Sylvia, D., Fuhrmann, J., Hartel, P. & Zuberer, D. (eds), Principles and Applications of Soil Microbiology. Prentice Hall, Upper Saddle River, New Jersey.
Ter Braak, C.J.F. & Smilauer, P. 2002. CANOCO Reference Manual and CanoDraw for Windows Uuser’s Guide: Software for Canonical Community Ordination (version 4.5). Biometris, Wageningen.
Ter Braak, C.J.F. & Prentice, I.C. 1988. 'A theory of gradient analysis', Advances in Ecological Research 18: 271–317. DOI: 10.1016/S0065-2504(03)34003-6.
Wang, G.M., Stribley, D.P., Tinker, P.B. & Walker, C. 1993. Effects of pH on arbuscular mycorrhiza I. Field observations on the long-term liming experiments at Rothamsted and Woburn. New Phytologist 124: 465–472. DOI: 10.1111/j.1469-8137.1993.tb03837.x.
Young, J.L., Davis, E.A. & Rose, S.L. 1985. Endo-mycorrhizal fungi in breeder wheats and Triticale cultivars field‐grown on fertile soil 1. Agronomy Journal 77(2): 219–224. DOI: 10.2134/ agronj1985.00021962007700020011x.
Zangeneh, S. 2021. Introduction of some new species of genus Acaulospora from Iran. Rostaniha 22(1): 67–74. DOI: 10.22092/botany.2021.353400.1235.
Zangeneh, S. 2023. Some new species of arbuscular mycorrhizal fungi symbiotic with sugarcane from Iran. Rostaniha 24(1): 78–87. DOI: 10.22092/BOT.J.IRAN.2023.362848.1365.