Study of morphological variation of Nostoc punensis and Desmonostoc salinum isolated from soils around lakes of Golestan province (N Iran) in different culture media

Document Type : Research Paper

Author

Assistant Prof., Department of Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran

Abstract

Studying the cyanobacteria strains grown on different culture media has led to controversies when they are identified by classic keys. Hence, the main target of this study is to identify cyanobacteria strains and compare their distribution in different soil, then identification the culture media with the highest stability and least effect on their variations. In this regard, soils samples of Ala gol, Aji gol, and Alma gol lakes belong to Golestan province (north of Iran), were collected and cyanobacteria taxa were isolated, and identified. In addition, an attempt was made to determine their incidence with some physicochemical characteristics of the soils. Morphological observation showed that five different strains were identified in Ajigol, four different strains in Alagol, and two different strains in Alma gol. Results of morphological identification showed that, Nostoc punensis and Anabaena sp. are common in Ala gol and Aji gol lakes, except Alma gol lake, where its EC was the highest and Dulcicalothrix alborzica and Neowestiellopsis persica were the only species found in the stands. Then two strains of Nostoc punensis and Desmonostoc salinum which had very variable morphology in culture media, were grown on Z8 and BG-11 culture media without nitrogen, and morphological variations of cells were measured from the inoculating time up to the end of the stationary phase of their growth. In addition, morphological variations showed that, vegetative cells and akinetes of both strains changed into spiral form and large and heterocytes also had a bony form on BG-11 medium but retained their natural form in Z8 medium. Accordingly, the Z8 medium is suggested to be used for its stability as preferred culture media to provide less morphological variations.
 
 

Keywords


Article Title [فارسی]

مطالعه تنوع ریخت‌شناختی Nostoc punensis و Desmonostoc salinum جدا شده از خاک‌های اطراف دریاچه‌های استان گلستان

Author [فارسی]

  • بهاره نوروزی
استادیار زیست‌شناسی مولکولی سیانوباکتری‌ها، گروه بیوتکنولوژی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران
Abstract [فارسی]

در مطالعه سویه‌های سیانوباکتریایی، تنوع ریخت‌شناختی سلول‌ها در هنگام رشد در محیط‌های کشت مختلف اغلب منجر به شکل‌گیری اختلاف نظرهای بسیاری در هنگام شناسایی آرایه‌ها با استفاده از کلیدهای شناسایی کلاسیک می‌شود. از این رو، هدف اصلی این مطالعه شناسایی سویه‌های سیانوباکتریایی و مقایسه توزیع آن‌ها و سپس تعیین بهترین محیط کشت با بیشترین ثبات و کمترین تأثیر بر تغییرات ریخت‌شناختی آن‌ها است. در این راستا، نمونه‌هایی از خاک اطراف دریاچه‌های آلاگل، آجی‌گل و آلماگل (استان گلستان) جمع‌آوری و آرایه‌های سیانوباکتریایی موجود در آن‌ها جداسازی و شناسایی شدند. به علاوه، ارتباط حضور سویه‌های مختلف سیانوباکتریایی با ویژگی‌های فیزیکوشیمایی خاک نیز بررسی گردید. براساس نتایج به‌ دست آمده، در مجموع، پنج سویه از آجی‌گل، چهار سویه از آلاگل و دو سویه از آلماگل گزارش شد. همچنین، نتایج بررسی‌ها نشان داد که دو سویه Nostoc punensis و Anabaena sp. در آلاگل و آجی‌گل به ‌صورت مشترک و دو سویه Dulcicalothrix alborzica و Neowestiellopsis persica تنها در خاک منطقه آلماگل با بیشترین میزان EC حضور داشتند. سپس، دو سویه Nostoc punensis و Desmonostoc salinum که دارای بیشترین تغییرات ریخت‌شناسی در محیط کشت بودند، جهت ادامه مطالعات انتخاب شدند و این تغییرات در دو محیط کشتZ8  و BG-11 فاقد نیترات از زمان تلقیح تا پایان مرحله ایستایی رشد اندازه‌گیری گردید. نتایج حاصل از بررسی تغییرات ریخت‌شناختی نشان داد که سلول‌های رویشی و آکاینت هر دو سویه در محیط کشت BG-11 مارپیچ، بزرگ و هتروسیست‌ها استخوانی شکل شدند، اما شکل طبیعی خود را در محیط کشت Z8 حفظ کردند. بر این اساس، پیشنهاد می‌شود از محیط کشت Z8 به عنوان محیط کشت ترجیحی برای حفظ ثبات سلول‌ها و تغییرات ریخت‌شناختی کمتر استفاده شود.
 

Keywords [فارسی]

  • آنالیز مورفومتریک
  • تنوع ریخت‌شناسی
  • سیانوباکتری‌های هتروسیست‌دار
  • محیط کشت Z8
Abioye, O.P., Ijah, U.J.J., Aransiola, S.A., Auta, S.H. & Ojeba, M.I. 2021. Bioremediation of Toxic Pesticides in Soil Using Microbial Products. Mycoremediation and Environmental Sustain-ability 3: 1–34.
Bertos-Fortis, M., Farnelid, H.M., Lindh, M.V., Casini, M., Andersson, A., Pinhassi, J. & Legrand, C. 2016. Unscrambling cyanobacteria community dynamics related to environmental factors. Frontiers in Microbiology 7: 625.
Bogunovic, I., Pereira, P. & Brevik, E.C. 2017. Spatial distribution of soil chemical properties in an organic farm in Croatia. Science of the Total Environment 584: 535–545.
Carey, C.C., Ibelings, B.W., Hoffmann, E.P., Hamilton, D.P. & Brookes, J.D. 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Research 46(5): 1394–1407.
Etemadikhah, A., Pourbabaei, A., Alikhani, H. & Norouzi, M. 2017. Isolation and identification of cyanobacteria from the super-saline soils of Kavir National Park. Iranian Soil and Water Research 48(3): 625–637.
Garcia, N.S., Fu, F., Sedwick, P.N. & Hutchins, D.A. 2015. Iron deficiency increases growth and nitrogen-fixation rates of phosphorus-deficient marine cyanobacteria. The ISME Journal 9(1): 238–245.
Ghadage, S.J. & Karande, V.C. 2019. The distribution of blue-green algae (Cyanobacteria) from the paddy fields of Patan & Karad tehsils of Satara District, Maharashtra, India. Journal of Threatened Taxa 11(14): 14862–14869.
Giordanino, M.V., Strauch, S.M., Villafañe, V.E. & Helbling, E.W. 2011. Influence of temperature and UVR on photosynthesis and morphology of four species of cyanobacteria. Journal of Photochemistry and Photobiology B: Biology 103(1): 68–77.
Green, T.G.A., Sancho, L.G., Pintado, A., Saco, D., Martín, S., Arróniz-Crespo, M., Angel Casermeiro, M., de la Cruz Caravaca, M.T., Cameron, S. & Rozzi, R. 2017. Sodium chloride accumulation in glycophyte plants with cyanobacterial symbionts. AoB Plants 9(6): 53–65.
Irisarri, P., Gonnet, S. & Monza, J. 2001. Cyanobacteria in Uruguayan rice fields: diversity, nitrogen fixing ability and tolerance to herbicides and combined nitrogen. Journal of Biotechnology 91(2–3): 95–103.
Komárek, J. 2016. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. European Journal of Phycology 51(3): 346–353.
Komárek, J. 2018. Several problems of the polyphasic approach in the modern cyanobacterial system. Hydrobiologia 811(1): 7–17.
Liu, L., Jokela, J., Wahlsten, M., Nowruzi, B., Permi, P., Zhang, Y.Z., Xhaard, H., Fewer, D.P. & Sivonen, K. 2014. Nostosins, trypsin inhibitors isolated from the terrestrial cyanobacterium Nostoc sp. strain FSN. Journal of Natural Products 77(8): 1784–1790.
Makhalanyane, T.P., Valverde, A., Velázquez, D., Gunnigle, E., Van Goethem, M.W., Quesada, A. & Cowan, D.A. 2015. Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats. Biodiversity and Conservation 24(4): 819–840.
Mareš, J., Strunecký, O., Bučinská, L. & Wiedermannová, J. 2019. Evolutionary patterns of thylakoid architecture in cyanobacteria. Frontiers in Microbiology 10: 277–298.
Mehda, S., Muñoz-Martín, M., Oustani, M., Hamdi-Aïssa, B., Perona, E. & Mateo, P. 2021. Microenvironmental Conditions Drive the Differential Cyanobacterial Community Composition of Biocrusts from the Sahara Desert. Microorganisms 9(3): 487–490.
Mischke, U. 2003. Cyanobacteria associations in shallow polytrophic lakes: influence of environmental factors. Acta Oecologica 24: 11–23.
Nisha, R., Kaushik, A. & Kaushik, C.P. 2007. Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma 138 (1–2): 49–56.
Nowruzi, B., Khavari-Nejad, R.A., Sivonen, K., Kazemi, B., Najafi, F. & Nejadsattari, T. 2012. Identification and toxigenic potential of a Nostoc sp. Algae 27(4): 303–313.
Nowruzi, B., Wahlsten, M. & Jokela, J. 2019. A report on finding a new peptide aldehyde from cyanobacterium Nostoc sp. Bahar m by lc-ms and Marfey’s analysis. Iranian Journal of Biotechnology 17(2): 32–45.
Nowruzi, B., Sarvari, G. & Blanco, S. 2020. The cosmetic application of cyanobacterial secondary metabolites. Algal Research 49: 101–959.
Nowruzi, B., Khavari-Nejad, R.A., Sivonen, K., Kazemi, B., Najafi, F. & Nejadsattari, T. 2013. Optimization of cultivation conditions to maximize extracellular investments of two Nostoc strains. Archiv für Hydrobiologie. Supplementband: Algological Studies 142(1): 63–76.
Nowruzi, B., Haghighat, S., Fahimi, H. & Mohammadi, E. 2018. Nostoc cyanobacteria species: a new and rich source of novel bioactive compounds with pharmaceutical potential. Journal of Pharmaceutical Health Services Research 9(1):
5–12.
Nowruzi, B., Bouaïcha, N., Metcalf, J.S., Porzani, S.J. & Konur, O. 2021. Plant-cyanobacteria interactions: Beneficial and harmful effects of cyanobacterial bioactive compounds on soil-plant systems and subsequent risk to animal and human health. Phytochemistry 192: 112–149.
Nowruzi, B. & Lorenzi, A.S. 2021. Characterization of a potentially microcystin-producing Fischerella sp. isolated from Aji gol wetland of Iran. South African Journal of Botany 137: 423–433.
Piotrowski, K., Romanowska-Duda, Z. & Grzesik, M. 2016. How Biojodis and Cyanobacteria alleviate the negative influence of predicted environmental constraints on growth and physiological activity of corn plants. Polish Journal of Environmental Studies 25(2): 33–45.
Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. & Stanier, R.Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111(1): 1–61.
Rocha, F., Esteban Lucas-Borja, M., Pereira, P. & Muñoz-Rojas, M. 2020. Cyanobacteria as a nature-based biotechnological tool for restoring salt-affected soils. Agronomy 10(9): 1321–1365.
Singh, J.S., Kumar, A., Rai, A.N. & Singh, D.P. 2016. Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Frontiers in Microbiology 7: 529–541.
Singh, A.K., Singh, P.P., Tripathi, V., Verma, H., Singh, S.K., Srivastava, A.K. & Kumar, A. 2018. Distribution of cyanobacteria and their interactions with pesticides in paddy field: a comprehensive review. Journal of Environmental Management 224: 361–375.
Srivastava, A.K., Bhargava, P., Kumar, A., Rai, L.C. & Neilan, B.A. 2009. Molecular characterization and the effect of salinity on cyanobacterial diversity in the rice fields of Eastern Uttar Pradesh, India. Saline Systems 5(1) 1–17.
Sullivan, M.J. & Currin, C.A. 2002. Community structure and functional dynamics of benthic microalgae in salt marshes. Concepts and Controversies in Tidal Marsh Ecology: 81–106.
Waterbury, J.B. 2006. The cyanobacteria-isolation, purification and identification. The Prokaryotes 4: 1053–1073.
Whitton, B.A. 2000. Soils and rice-fields. The Ecology of Cyanobacteria. Pp. 233–255.
Wu, Z., Zeng, B., Li, R. & Song, L. 2012. Physiological regulation of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) in response to inorganic phosphorus limitation. Harmful Algae 15: 53–58.
Zhang, B., Zhang, Y., Downing, A. & Niu, Y. 2011. Distribution and composition of cyanobacteria and microalgae associated with biological soil crusts in the Gurbantunggut Desert, China. Arid Land Research and Management 25(3): 275–293.
Volume 22, Issue 2 - Serial Number 62
December 2021
Pages 297-309
  • Receive Date: 11 December 2021
  • Revise Date: 31 December 2021
  • Accept Date: 17 January 2022
  • First Publish Date: 17 January 2022