Taxonomic study of cyanoprokaryotes from medicinal plants bed with emphasis on phylogeny of complex taxa using 16S rRNA marker

Document Type: Research Paper

Authors

1 PhD Student, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

2 Prof., Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

3 Assistant Prof., Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

4 MSc Graduate, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

Abstract

Cyanoprokaryotes are simple photosynthetic microorganisms which have an important role in the soil carbon and nitrogen cycle. The current study aimed to investigate the flora of cyanoprokaryotes from medicinal plants bed. Also phylogenetic analysis based on 16S rRNA marker was performed to investigate the phylogenetic relationships between different cyanoprokaryotic taxa and evaluate the efficiency of this marker in separation of taxonomic boundaries between taxa especially in the case of complex taxa, which their relations are not well-defined. For this purpose, after collection of soil, isolation and purification of strains were performed. The cyanoprokaryotic taxa were identified morphologically and 16S rRNA marker was used to approve the identifications. Phylogenetic analysis performed using Maximum Likelihood, Maximum Parsimony and Bayesian Inference. Totally, 42 cyanoprokaryotic taxa were identified and Nostoc was an abundant genus in the soil of medicinal plants bed. The phylogenetic tree revealed Nostocales as a monophyletic group. Also, Wollea together with Anabaena, and Nostoc together with Desmonostoc created monophyletic groups. Results revealed that, 16S rRNA is an effective phylogenetic marker in high classification rankings such as order, family and genus. However, 16S rRNA could not be an effective marker in separation of close genera such as Nostoc and Desmonostoc.
 
 

Keywords


Article Title [Persian]

مطالعه تاکسونومیک سیانوپروکاریوت‌های بستر رویشی گیاهان دارویی با تاکید بر فیلوژنی آرایه‌های پیچیده با استفاده از مارکر 16S rRNA

Authors [Persian]

  • سمیه زارع زاده 1
  • حسین ریاحی 2
  • زینب شریعتمداری 3
  • معصومه سادات حسینی 4
1 دانشجوی دکتری دانشکده علوم و فناوری زیستی، دانشگاه شهید بهشتی، تهران، ایران
2 استاد دانشکده علوم و فناوری زیستی، دانشگاه شهید بهشتی، تهران، ایران
3 استادیار دانشکده علوم و فناوری زیستی، دانشگاه شهید بهشتی، تهران، ایران
4 فارغ‌التحصیل کارشناسی ارشد، دانشکده علوم و فناوری زیستی، دانشگاه شهید بهشتی، تهران، ایران
Abstract [Persian]

سیانوپروکاریوت‌ها موجودات ریز و ساده فتوسنتز‌کننده‌ای هستند که نقش مهمی در چرخه‌های نیتروژن و کربن خاک ایفا می‌نمایند. هدف مطالعه حاضر، بررسی فلور سیانوپروکاریوت‌های موجود در بستر رویشی گیاهان دارویی است. همچنین، بررسی فیلوژنتیک به منظور ارزیابی روابط فیلوژنی میان آرایه‌های مختلف سیانوپروکاریوتی با استفاده از مارکر 16S rRNA و ارزیابی کارآمدی این مارکر در جداسازی مرزهای تاکسونومیک میان آرایه‌ها، به ویژه در موارد پیچیده که روابط میان آن‌ها به خوبی شناخته شده نیست، انجام گرفته است. به این منظور، پس از جمع‌آوری خاک، جداسازی و خالص‌سازی سویه‌ها انجام گرفت. آرایه‌های سیانوپروکاریوتی براساس خصوصیات ریخت‌شناختی شناسایی شدند و تایید شناسایی‌ها با کمک مارکر مولکولی 16S rRNA انجام گرفت. روابط فیلوژنی با استفاده از Maximum Likelihood، Maximum Parsimony و Bayesian Inference مورد ارزیابی قرار گرفت. در مجموع، 42 آرایه سیانوپروکاریوتی شناسایی شد و نتایج نشان‌دهنده‌ غالب بودن جنس گونه Nostocدر فلور بستر رویشی گیاهان دارویی بود. درخت حاصل از نتایج فیلوژنی نشان‌دهنده تک‌نیایی بودن Nostocales است. همچنین، جنس‌های Wollea و Anabaena با یکدیگر و نیز جنس‌هایNostoc  و Desmonostoc با هم، گروه‌های تک‌نیا را تشکیل دادند. نتایج نشان‌دهنده‌ کارآمدی مارکر16S rRNA در سطوح بالای سیستم رده‌بندی، اعم از راسته، تیره و جنس می‌باشد. با این وجود، این مارکر در جداسازی آرایه‌های نزدیک به یکدیگر نظیر Desmonostoc و Nostoc از کارآمدی لازم برخوردار نیست.
 
 

Keywords [Persian]

  • سیانوپروکاریوت
  • 16S rRNA
  • فیلوژنی
  • Wollea
  • Desmonostoc
Adams, D.G. & Duggan, P.S. 1999. Tansley Review No. 107. Heterocyst and akinete differentiation in cyanobacteria. New Phytologist 144(1): 3–33.

Ahlesaadat, M., Riahi, H., Shariatmadari, Z. & Hakimi Meybodi, M.H. 2017. A taxonomic study of cyanobacteria in wheat fields adjacent to industrial areas in Yazd province (Iran). Rostaniha 18(2): 107–121.

Anand, N., Thajuddin, N. & Dadheech, P.K. 2019. Cyanobacteria from basic science to applications. Mishra, A.K., Tiwari, D.N. & Rai, A.N.
(eds). Chapter 3: Cyanobacterial taxonomy: morphometry to molecular studies. Academic Press, pp. 43–64.

Aslani, E., Riahi, H., Shariatmadari, Z. & Bazzi, F. 2014. The study of heterocystous cyanobacteria from paddy fields in Kalat Naderi district in North-East of Iran. The Iranian Journal of Botany 20(2):
257–264.

Beck, C., Knoop, H., Axmann, I.M. & Steuer, R. 2012. The diversity of cyanobacterial metabolism: genome analysis of multiple phototrophic microorganisms. BMC Genomics 13(1): 56.

Casamatta, D.A., Johansen, J.R., Vis, M.L. & Broadwater, S.T. 2005. Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). Journal of Phycology 41: 421–438.

Chookalaii, H. 2015. A systematic study of blue-green algae from Plantago major L. habitats and their effect on medicinal properties of this plant, MSc thesis, Shahid Beheshti University.

Desikachary, T.V. 1959. Cyanophyta. Indian Council ofAgricultural Research, New Delhi, 686 pp.

Edgar, R.C. 2004. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797.

Ezhilarasi, A. & Anand, N. 2009. Phylogenetic analysis of Anabaena spp. (cyanobacteria) using sequences of 16S rRNA gene. Australian Journal of Basic and Applied Sciences 3(4): 4026–4031.

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 38: 783–791.

Giovannoni, S.J., Turner, S., Olsen, G.J., Barns, S., Lane, D.J. & Pace, N.R. 1988. Evolutionary relationships among cyanobacteria and green chloroplasts, Journal of Bacteriology 170(8): 9.

Hall, T.A. 1999. BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Hokmollahi, F., Riahi, H., Soltani, N., Shariatmadari, Z. & Hakimi, M.H. 2015. A taxonomic study of blue-green algae based on morphological, physiological and molecular characterization in Yazd province terrestrial ecosystems (Iran). Rostaniha 16(2): 152–163.

Honda, D., Yokota, A. & Sugiyama, J. 1999. Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. Journal of Molecular Evolution 48: 723–739.

Hosseini, M.S. 2016. Morphometric and phylogenetic study of blue-green algae from Mentha piperita L. habitats and their effect on medicinal component of this plant, MSc thesis, Shahid Beheshti University, Tehran, Iran.

Hrouzek, P., Lukešová, A., Mareš, J. & Ventura, S. 2013. Description of the cyanobacterial genus Desmonostoc gen. nov. including D. muscorum comb. nov. as a distinct, phylogenetically coherent taxon related to the gen. Nostoc and Fottea. Olomouc 13(2): 201–213.

Ishida, T., Watanabe, M.M., Sugiyama, J. & Yokota, A. 2001. Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. FEMS Microbiology Letters 201: 79–82.

John, D.M., Whitton, B.A. & Brook, A. 2002. The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae, Cambridge University Press, Cambridge.

Komàrek, J. 1975. Blaualgen aus dem Naturschutzgebiet “Řežabinec” bei Ražice. Nova Hedwig 26: 601–643.

Komárek, J. & Hauer, T. 2013. CyanoDB.cz - On-line database of cyanobacterial genera. - Word-wide electronic publication, Univ. of South Bohemia & Inst. of Botany AS CR, http://www.cyanodb.cz.

Komárek, J. 2013. Süßwasserflora von Mitteleuropa, Bd. 19/3: Cyanoprokaryota 3. Teil/3rd. Part: Heterocytous Genera.

Korelusová, J. 2005. Polyfázicky pristup k fylogenezi vybranych sinic [Polyphasic approach to the phylogeny of selected cyanobacteria]. BSc Thesis, Faculty of Biological Sciences, University of South Bohemia.

Kozhevnikov, I.V. & Kozhevnikova, N.A. 2011. Phylogenetic and morphological evaluation of Wollea saccata (Nostocales, Cyanobacteria) isolated from the Yenissei River basin (Eastern Siberia, Russia). Fottea 11(1): 99–106.

Kumar, K., Mella-Herrera, R.A. & Golden, J.W. 2010. Cyanobacterial heterocysts. Spring Harbor Perspectives in Biology 2(4): a000315-a000315.

Lazaroff, N. 1966. Photoinduction and photoreversal of the Nostocacean developmental cycle. Journal of Phycology 2: 7–17.

Muralitharan, G. & Thajuddin, N. 2013. Genetic heterogeneity of marine Oscillatoriales revealed by 16S rRNA gene sequencing. Phykos 43(1): 8–21.

Nelissen, B., De Baere, R., Wilmotte, A. & De Wachter, R. 1996. Phylogenetic relationships of nonaxenic filamentous cyanobacterial strains based on 16S rRNA sequence analysis. Journal of Molecular Evolution 42(2): 194–200.

Nowruzi, B., Fahimi, H. & Ordodari, N. 2017. Molecular phylogenetic and morphometric evaluation of Calothrix sp. N42 and Scytonema sp. N11. Rostaniha 18(2): 210–221.

Nylander, J.A.A. 2004. MRModeltest Ver. 2. Program distributed by the author. Uppsala University, Uppsala.

Page, D.M. 2001. Treeview (Win32) Ver. 1.6.6. Available: http://taxonomy.zoology.gla.ac.uk/rod/treeview.html

Palinska, K.A., Deventer, B., Hariri, K. &  Maria, L. 2011. A taxonomic study on Phormidium group (cyanobacteria) based on morphology, pigments, RAPD molecular markers and RFLP analysis of the 16S rRNA gene fragment. Fottea 11(1): 41–55.

Posada, D. & Buckley, T.R. 2004. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Systems Biology 53: 793–808.

Prescott, G.W. 1970. Algae of the western Great Lakes area, Wm. C. Brown, Dubuque, Iowa.

Rangaswamy, G. 1966. Agricultural Microbiology, Asia Publishing House, Bombay, India.

Robertson, B.R., Tezuka, N. & Watanabe, M.M. 2001. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA andpart of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. International Journal of Systematic and Evolutionary Microbiology 51: 861–871.

Ronquist, F. & Huelsenbeck, J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1–210.

Sanger, F. & Coulson, A.R. 1975. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase, Journal of Molecular Biology 94: 441–448.

Sentausa, E. & Fournier P.-E. 2013. Advantages and limitations of genomics in prokaryotic taxonomy. Clinical Microbiology and Infection 19: 790–795.

Shariatmadari, Z., Moharrek, F., Riahi, H., Heidari, F. & Aslani, E. 2017. Efficiency of partial 16S rRNA gene sequencing as molecular marker for phylogenetic study of cyanobacteria, with emphasis on some complex taxa. Acta Biologica Szegediensis 61(1): 59–68.

Shariatmadari, Z., Riahi, H., Abdi, M., Hashtroudi, M.S. & Ghassempour, A.R. 2015. Impact of cyanobacterial extracts on the growth and oil content of the medicinal plant Mentha piperita L. Journal of Applied Phycology 27(6): 2279–2287.

Shariatmadari, Z., Riahi, H., Hashtroudi, S.M., Ghassempour, A. & Aghashariatmadary, Z. 2013. Plant growth promoting cyanobacteria and their distribution in terrestrial habitats of Iran. Soil Science and Plant Nutrition 59(4): 535–547.

Shariatmadari, Z., Riahi, H. & Sonboli, A. 2014. Morphometric and phylogenetic analyses of Anabaena strains (Cyanoprokaryota) from terrestrial habitats of Iran. The Iranian Journal of Botany 20(1): 119–129.

Silvestro, D. & Michalak, I. 2012. raxmlGUI: a graphical frontend for RAxML. Organisms Diversity & Evolution 12: 335–337.

Stanier, R.Y., Kunisawa, R., Mandal, M. & Cohen-Bazire, G. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews 35: 171–305.

Swofford, D.L. 2002. PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods) Ver. 4.0b10. Sinauer Associates, Sunderland.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–273.

Wanigatunge, R.P., Magana-Arachchi, D.N., Chandrasekharan, N.V. & Kulasooriya, S.A. 2014. Genetic diversity and molecular phylogeny of cyanobacteria from Sri Lanka based on 16S rRNA gene. Environmental Engineering Research 19(4): 317–329.

Wehr, J.D., Sheath, R.G. & Thorp, J.H. 2002. Freshwater algae of North America: ecology and classification, Aquatic Ecology Press, California.

Yeager, C.M., Kornosky, J.L., Morgan, R.E., Cain, E.C., Garcia-Pichel, F., Housman, D.C., Belnap, J. & Kuske, C.R. 2007. Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau, USA. FEMS Microbiology Ecology 60(1): 85–97.