Molecular and micro-morphological evidences of the genus Cuscuta in Iran

Document Type : Systematics and Biodiversity of Plants

Authors

1 PhD Graduate, Department of Biology, Faculty of Sciences, Gonbad Kavous University, Gonbad, Iran

2 PhD Graduate, Department of Biology, Faculty of Sciences, University of Qom, Qom, Iran

3 Associate Prof., Department of Biology, Faculty of Sciences, Gonbad Kavous University, Gonbad, Iran

4 MSc Graduate, Department of Biology, Faculty of Sciences, Gonbad Kavous University, Gonbad, Iran

5 Assistant Prof., Department of Biology, Faculty of Sciences, Gonbad Kavous University, Gonbad, Iran

Abstract

Cuscuta is the only parasitic genus in Convolvulaceae family. This genus is globally distributed, with most species in the tropics, subtropics, and some in the temperate regions. In this study, the micro-morphological features and molecular evidencesof 12 populations from three species of Cuscuta (C. australis, C. campestris,and C. chinensis) have been considered. In total, seven quantitative and two qualitative characters of pollen were selected and measured. The most important characters include: shape, ornamentation of tectum, exine thickness and colpus length of the pollen. Based on this study, the seed shape and surface support at least for separation of C. australis from other two species. Using nuclear (nrDNA ITS) marker, we reconstructed phylogenetic relationships within three species of Cuscuta. This data set was analyzed by phylogenetic methods including Bayesian, Maximum likelihood, and Maximum parsimony. In phylogenetic analyses, all members of three species formed a well-supported clade (PP=1, ML/BS=100/100) and divided into two major clades (A and B). Clade A is composed of specimens of C. australis. Two species of C. campestris and C. chinensis are nested in clade B. Neighbor-Net diagram demonstrated separation of the studied populations.
The results showed that, micro-morphological and molecular data provide reliable evidence for separation of these species.
 

Keywords

Main Subjects


Article Title [Persian]

شواهد مولکولی و ریزریخت‌شناختی جنس سس در ایران

Authors [Persian]

  • الهام امینی 1
  • فاطمه نصر الهی 2
  • علی ستاریان 3
  • سهیلا کر 4
  • سهراب بوذرپور 5
1 دانش آموخته دکتری، گروه زیست شناسی، دانشکده علوم پایه، دانشگاه گنبد کاووس، گنبد کاووس، ایران
2 دانش آموخته دکتری، گروه زیست شناسی، دانشکده علوم پایه، دانشگاه قم، قم، ایران
3 دانشیار گروه زیست شناسی، دانشکده علوم پایه، دانشگاه گنبد کاووس، گنبد کاووس، ایران
4 دانش موخته کارشناسی ارشد، گروه زیست شناسی، دانشکده علوم پایه، دانشگاه گنبد کاووس، گنبد کاووس، ایران
5 استادیار گروه زیست شناسی، دانشکده علوم پایه، دانشگاه گنبد کاووس، گنبد کاووس، ایران
Abstract [Persian]

سس (Cuscuta) تنها جنس انگلی در تیره پیچکیان است. این جنس پراکنش جهانی داشته و اکثر گونه‌های آن در مناطق گرمسیری، نیمه‌گرمسیری و بعضی در مناطق معتدل پراکندگی دارند. در این مطالعه، ویژگی‌های ریزریخت‌شناختی و مولکولی 12 جمعیت از سه گونه سس (C. australis، C. campestris و C. chinensis) مورد بررسی قرار گرفت تا ارزش تشخیصی آن‌ها ارزیابی شود. در کل، هفت ویژگی کمی و دو ویژگی کیفی در گرده انتخاب شده و مورد اندازه‌گیری قرار گرفتند. مهمترین ویژگی‌ها شامل شکل، تزیینات تکتوم، ضخامت اگزین و طول شیار گرده هستند. براساس این تحقیق، شکل و سطح دانه، جدایی C. australis را از دو گونه دیگر مورد تایید قرار داد. همچنین در این تحقیق، با استفاده از نشانگر هسته‌ای (nrDNA ITS)، روابط فیلوژنتیکی در سه گونه از این آرایه بازسازی گردید. داده‌ها توسط آنالیزهای فیلوژنتیکی شامل بیزین، بیشینه درست‌‌نمایی و بیشینه صرفه‌جویی مورد بررسی قرار گرفتند. در آنالیزهای فیلوژنتیکی همه اعضای این سه گونه یک شاخه با حمایت بسیار بالا (PP=1, ML/BS=100/100) تشکیل دادند و به دو گروه اصلی تفکیک شدند (A و B). شاخه A از نمونه‌های گونه C. australis تشکیل شده و دو گونه  C. campestrisو C. chinensis در شاخه B قرار گرفتند. روش شبکه-همسایه، جدایی جمعیت‌های مورد مطالعه را ثابت کرد و نتایج نشان داد که داده‌های ریزریخت‌شناختی و مولکولی، جدایی این گونه‌ها را از هم تایید می‌کنند.

Keywords [Persian]

  • پیچکیان
  • دانه
  • شبکه-همسایه
  • فاصله‌گذار رونویسی شونده درون هسته‌ای
  • گرده
Abdel Khalik, K. & Van der Maesen, L.J.G. 2002. Seed morphology of some tribes of Brassicaceae (implications for taxonomy and species identification for the flora of Egypt). Blumea 47: 363–383.
Austin, D.F. 1980. Studies of the Florida Convolvulaceae III. Cuscuta. Florida Scientist 43: 294–302.
Baldwin, B.G. 1992.  Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: An example from the Compositae. Molecular Phylogenetics and Evolution 1: 3–16.
Baldwin, B.G., Sanderson, M.J., Porter, J.M., Wojciechowski, M.F., Campbell, C.S. & Donoghue, M.J. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden 82: 247–277.
Bryant, D. & Moulton, V. 2004. Neighbor-Net: An agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution 21: 255–265.
Carine, M.A., Robba, L., Little, R., Russel, S. & Guerra, A.S. 2007. Molecular and morphological evidence for hybridization between endemic Canary Island Convolvulus. Botanical Journal of the Linnean Society 154: 187–204.
Chase, M.W., Soltis, D.E., Olmstead, R.G. et al. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Annals of the Missouri Botanical Garden 80: 528–580.
Costea, M. & Tardif, F.J. 2006. Biology of Canadian weeds. Cuscuta campestris Yuncker, C. gronovii Willd. ex Schult., C. umbrosa Beyr. ex Hook., C. epithymum (L.) L., and C. epilinum Weihe. Canadian Journal of Plant Science 86: 293–316.
Cronquist, A. 1981. An Integrated System of Classification of Flowering Plants. Columbia University Press, New York, USA.
Dawson, J.H., Musselman, L.J.,Wolswinkel, P. & Dörr, I. 1994. Biology and control of Cuscuta. Weed Science Society of America 6: 265–317.
Demir, I., Kaya, I., Benli, M. & Altinoglu, M.K. 2017. Investigation of Palinological features of taxa belonging to the genus Cuscuta distributed in Turkey. International Journal of Agriculture and Biology 19: 746–750.
Depamphilis, C.W., Young, N.D. & Wolfe, A.D. 1997. Evolution of plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: Many losses of photosynthesis and complex patterns of rate variation. Proceedings of the National Academy of Sciences of the United States of America 94: 7367–7372.
Duff, R.J. & Nickrent, D.L. 1997. Characterization of mitochondrial small-subunit ribosomal RNAs from holoparasitic plants. Journal of Molecular Evolution45: 631–639.
Edgar, R.C. 2004. Muscle: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797.
Erdtman, G. 1952. Pollen Morphology and Plant Taxonomy. Angiosperms. Chronica Botanica Co., Waltham, Massachusettes. Copenhagen.
Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791.
Frajman, B. & Oxelman, B. 2007. Reticulate phylogenetics and phytogeographical structure of Heliosperma (Sileneae, Caryophyllaceae) inferred from chloroplast and nuclear DNA sequences. Molecular Phylogenetics and Evolution43: 140–155.
Garcia, M.A., Costea, M., Kuzmina, M. & Stefanovic, S. 2014. Phylogeny, character evolution, and biogeography of Cuscuta (dodders; Convolvulaceae) inferred from coding plastid and nuclear sequences. American Journal of Botany101: 670–690.
Garcia, M.A. & Martin, M.P. 2007. Phylogeny of Cuscuta subgenus Cuscuta (Convolvulaceae) based on nrDNA ITS and chloroplast trnL intron sequences. Systematic Botany 32: 899–916.
Grimm, G.W. & Denk, T. 2008. ITS evolution in Platanus (Platanaceae): Homoeologues, pseudogenes and ancient hybridization. Annals of Botany101: 403–419.
Hallier, H. 1893. Versucheinernaturlichengliederung der Convolvulaceen auf morphologischer und anatomischergrundlage. BotanischeJahrbucher fur Systematik16: 453–591.
Hamed, A.K. 2005. Pollen and seed characters of certain Cuscuta species growing in Egypt with a reference to a taxonomic treatment of the genus. International Journal of Agriculture and Biology 7: 325–332.
Hamed, K.A. & Mourad, M.M. 1994. Seed exomorphic and anatomical characters of some species of Convolvulaceae. Egyptian Journal of Botany 34: 1–16.
Huang, J.Z., Li, Y.H. & Zhang, Y.Y.1993. Surface ultrastructure of seeds of Chinese Cuscuta. Acta Phytotaxonomica Sinica 31: 261–265.
Hunziker, A.T. 1950. Las especies de Cuscuta (Convolvulaceae) de Argentina y Uruguay. Revista de la Facultad de Ciencias Exactas Fisicas y Naturales 12: 1101–1202.
Huson, D.H. 1998. Splits Tree: A program for analyzing and visualizing evolutionary data. Bioinformatics 14: 68–73.
Jafari, E., Assadi, M. & Ghanbarian, G.A. 2016. A revision of Cuscutaceae family in Iran. Iranian Journal of Botany 22: 23–29.
Jafari, E. 2017. Cuscutaceae. Pp. 3–51. In: Assadi, M. et al. (eds). Flora of Iran. Research Institute of Forests and Rangeland, Tehran.
Kazempour-Osaloo, S., Maassoumi, A.A. & Murakami, N. 2003. Molecular systematics of the genus Astragalus L. (Fabaceae): Phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacers and chloroplast gene ndhF sequences. Plant Systematics and Evolution 242: 1–32.
Kazempour-Osaloo, S., Maassoumi, A.A. & Murakami, N. 2005. Molecular systematics of the Old World Astragalus (Fabaceae) as inferred from nrDNA ITS sequence data. Brittonia 57: 367–381.
Keskin, F., Kaya, I., Usta, M., Demir, I., Hioglu, H.M.S. & Nemli, Y. 2017. Molecular cloning and sequence analysis of its region of nuclear ribosomal DNA for species identification in dodders (Cuscuta; Convolvulaceae). International Journal of Agriculture and Biology 19: 1447–1451.
Kuijt, J. 1969. The Biology of Parasitic Flowering Plants. University of California Press, Berkeley, California, USA.

Kumar, S., Stecher, G. & Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis Ver. 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874.

Liao, G.I., Chen, M.Y. & Kuoh, C.S. 2005. Pollen morphology of Cuscuta (Convolvulaceae) in Taiwan. Botanical Bulletin of Academia Sinica 46: 75–81.
Lyshede, O.B. 1992. Studies on mature seeds of Cuscuta pedicellata and C. campestris by electron microscopy. Annals of Botany 69: 365–371.
Miller, M.A., Pfeiffer, W. & Schwartz, T. 2010. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, Louisiana. Piscataway, IEEE, pp. 45–52.
Moore, P.D., Webb, J.A. & Collinson, M.E. 1991. Pollen Analysis. Blackwell Scientific Publications, London.
Naderisafar, K., Kazempour-Osaloo, S., Maassoumi, A.A. & Zarre, Sh. 2014. Molecular phylogeny of Astragalus section Anthylloidei (Fabaceae) inferred from nrDNA ITS and plastid rpl32-trnL(UAG) sequence data. Turkish Journal of Botany 38: 637–652.
Nickrent, D.L. & Starr, E.M. 1994. High rates of nucleotide substitution in nuclear small-subunit (18S) rRNA from holoparasitic flowering plants. Journal of Molecular Evolution 39: 62–70.
Nylander, J.A.A. 2004. MrModeltest Ver. 2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala.
Page, D.M. 2001. TreeView (Win 32) Ver. 1.6.6. Available: http:// taxonomy.zoology.gla.ac.uk/rod/treeview.html.
Perveen, A. & Qaiser, M. 2004. Pollen flora of Pakistan-XLI. Cuscutaceae. Pakistan Journal of Botany 36: 475–480.
Podani, J. 2000. Introduction to the Exploration of Multivariate Data. Backhuyes, Leiden, 407 pp.
Posada, D. & Buckley, T.R. 2004. Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Systematic Biology 53: 793–808.
Punt, W., Hoen, P.P., Blackmore, S., Nilsson, S. & Thomas, A.L. 2007. Glossary of pollen and spore terminology. Review of Palaebotany and Palynology 143: 1–81.
Ramdhani, S., Cowling, R.M. & Barker, N.P. 2010. Phylogeography of Schotia (Fabaceae): Recent evolutionary processes in an ancient thicket biome lineage. International Journal of Plant Sciences 171: 626–640.
Rechinger, K.H. & Yuncker, T.G. 1964. Cuscutaceae. Pp. 1–16. In: Rechinger, K.H. (ed.), Flora Iranica, Vol. 8. AkademischeDruck-u.-Verlagsanstalt. Graz.
Ronquist, F., Teslenko, M., Vander mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. 2012. MrBayes Vol. 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.
Sang, T., Crawford, D. J. & Stuessy, T. 1995. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: Implication for biogeography and concerted evolution. Proceedings of the National Academy of Sciences of the United States of America 92: 6813–6817.
Sengupta, S. 1972. On the pollen morphology of Convolvulaceae with special reference to taxonomy. Review of Palaeobotanyand Palynolology13: 157–212.
Sheidai, M., Zanganeh, S., Haji-ramezanali, R., Nouroozi, M., Noormohammadi, Z. & Ghsemzadeh-baraki, S. 2013. Genetic diversity and population structure in four cirsium (Asteraceae) species. Biologia 68: 384−397.
Sheidai, M., Ziaee, S., Farahani, F., Talebi, S.Y., Noormohammadi, Z. & Hasheminejad-Ahangarani-Farahani, Y. 2014. Infra-specific genetic and morphological diversity in Linum album (Linaceae). Biologia 69: 32–39.
Soltis, D.E. & Soltis, P.S. 2000. Contributions of plant molecular systematics to studies of molecular evolution. Plant Molecular Biology42: 45–75.
Stamatakis, A. 2014. RAxML Ver. 8: a tool for phylogenetic analysis and post analysis of large phylogenies. Bioinformatics 30: 1312–1313.
Stefanovic, S., Kuzmina, M. & Costea, M. 2007. Delimitation of major lineages within Cuscuta subgenus Grammica (Convolvulaceae) using plastid and nuclear DNA sequences. American Journal of Botany 94: 568–589.
Stewart, G.R. & Press, M.C. 1990. The physiology and biochemistry of parasitic angiosperms. Annual Review of Plant Biology 41: 127–151.
Swofford, D.L. 2002. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods) Ver. 4.0b10. Sunderland: Sinauer Associates.
Weiss-schneeweiss, H., Tremetsberger, K., Schneeweiss, G.M., Parker, J.S. & Stuessy, T.F. 2008. Karyotype diversification and evolution in diploid and polyploid South American Hypochaeris (Asteraceae) inferred from rDNA localization and genetic fingerprint data. Annals of Botany 101: 909–918.
Welsh, M., Stefanović, S. & Costea, M. 2010. Pollen evolution and its taxonomic significance in Cuscuta (dodders, Convolvulaceae). Plant Systematics and Evolution 285: 83–101.
White, T. J, Bruns, T., Lee, S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315–322. In: Innis, M., Gelfand, D., Sninsky, J. & White, T. (eds). PCR Protocols: A Guide to Methods and Applications. San Diego: Academic Press.
Wolfe, A.D. & Depamphilis, C.W. 1997. Alternate paths of evolution for the photosynthetic gene rbcL in four nonphotosynthetic species of Orobanche. Plant Molecular Biology 33: 965–977.
Young, N.D., Steiner, K.E. & Depamphilis, C.W. 1999. The evolution of parasitism in Scrophulariaceae/Orobanchaceae: Plastid gene sequences refute an evolutionary transition series. Annals of the Missouri Botanical Garden 86: 876–893.
Yuncker, T.G. 1932. The genus Cuscuta. Memoirs of the Torrey Botanical Club 18: 113–331
Yuncker, T.G. & Rechinger, K.H. 1969. Pp. 1–16. In: Flora Iranica, Vol. 8. Rechinger, K.H. (ed.). AkademischeDruck-u.-Verlagsanstalt, Graz.
Volume 19, Issue 2 - Serial Number 56
December 2018
Pages 113-129
  • Receive Date: 31 July 2018
  • Revise Date: 19 August 2018
  • Accept Date: 01 December 2018
  • Publish Date: 01 December 2018